黎曼的zeta函数(1)

本篇是黎曼 ζ \zeta ζ函数系列的第二篇,传送门在此书接上回,让我们继续出发。
如果你已读完本篇,请移步第三篇

欧拉乘积公式

著名的欧拉乘积公式
ζ ( s ) = ∑ n = 1 ∞ 1 n s = ∏ p 1 1 − 1 p s \zeta(s) = \sum_{n = 1}^\infin \frac{1}{n^s} = \prod_p\frac{1}{1 - \frac{1}{p^s}} ζ(s)=n=1ns1=p1ps11
揭开了素数分布秘密的一角。证明思路如下,由
ζ ( s ) = 1 1 s + 1 2 s + 1 3 s + ⋯ \zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots ζ(s)=1s1+2s1+3s1+
两边乘以 1 2 s \frac{1}{2^s} 2s1就得到
1 2 s ζ ( s ) = 1 2 s + 1 4 s + 1 6 s + ⋯ \frac{1}{2^s}\zeta(s) = \frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{6^s} + \cdots 2s1ζ(s)=2s1+4s1+6s1+
两式相减得(减掉所有2的倍数项)
( 1 − 1 2 s ) ζ ( s ) = 1 1 s + 1 3 s + 1 5 s + ⋯ (1 - \frac{1}{2^s})\zeta(s) = \frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + \cdots (12s1)ζ(s)=1s1+3s1+5s1+
两边乘以 1 3 s \frac{1}{3^s} 3s1就得到
1 3 s ( 1 − 1 2 s ) ζ ( s ) = 1 3 s + 1 9 s + 1 1 5 s + ⋯ \frac{1}{3^s}(1 - \frac{1}{2^s})\zeta(s) = \frac{1}{3^s} + \frac{1}{9^s} + \frac{1}{15^s} + \cdots 3s1(12s1)ζ(s)=3s1+9s1+15s1+
再相减就得到(减掉所有3的倍数项)
( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 1 s + 1 5 s + 1 7 s + ⋯ (1 - \frac{1}{3^s})(1 - \frac{1}{2^s})\zeta(s) = \frac{1}{1^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots (13s1)(12s1)ζ(s)=1s1+5s1+7s1+
两边乘以 1 5 s \frac{1}{5^s} 5s1再相减(减掉所有5的倍数项),如此这般下去,干掉右边所有得项,最终得到
⋯ ( 1 − 1 5 s ) ( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 \cdots(1 - \frac{1}{5^s})(1 - \frac{1}{3^s})(1 - \frac{1}{2^s})\zeta(s) = 1 (15s1)(13s1)(12s1)ζ(s)=1
不难发现,乘到左边的项都是素数项,所以就有
ζ ( s ) = ∏ p 1 1 − 1 p s \zeta(s) = \prod_p\frac{1}{1 - \frac{1}{p^s}} ζ(s)=p1ps11

Möbius函数

让我们尝试展开上式的右侧,得到
1 ζ ( s ) = ( 1 − 1 2 s ) ( 1 − 1 3 s ) ( 1 − 1 5 s ) ( 1 − 1 7 s ) ⋯ = 1 − 1 2 s − 1 3 s − 1 5 s + 1 6 s − 1 7 s + ⋯ \frac{1}{\zeta(s)} = (1 - \frac{1}{2^s})(1 - \frac{1}{3^s})(1 - \frac{1}{5^s})(1 - \frac{1}{7^s})\cdots \\ = 1 - \frac{1}{2^s} - \frac{1}{3^s} - \frac{1}{5^s} + \frac{1}{6^s} - \frac{1}{7^s} + \cdots ζ(s)1=(12s1)(13s1)(15s1)(17s1)=12s13s15s1+6s17s1+
如果把这个级数写成Dirichlet级数
1 ζ ( s ) = ∑ n a n n s \frac{1}{\zeta(s)} = \sum_n\frac{a_n}{n^s} ζ(s)1=nnsan
的形式,就会有当 n n n为偶数个不同素数乘积时 a n = 1 a_n = 1 an=1,当 n n n为奇数个不同素数乘积时 a n = − 1 a_n = -1 an=1,而当 n n n可被某一素数的平方整除时 a n = 0 a_n = 0 an=0. 我们就定义这样的 a n a_n an为Möbius函数,记为 μ ( n ) \mu(n) μ(n),于是
1 ζ ( s ) = ∑ n μ ( n ) n s \frac{1}{\zeta(s)} = \sum_n\frac{\mu(n)}{n^s} ζ(s)1=nnsμ(n)
容易验证Möbius函数是积性函数,也就是说 μ ( 1 ) = 1 \mu(1) = 1 μ(1)=1,且当 a ,   b a, ~ b a, b互质时, μ ( a b ) = μ ( a ) μ ( b ) \mu(ab) = \mu(a)\mu(b) μ(ab)=μ(a)μ(b).

素数定理

欧拉注意到,当 s = 1 s = 1 s=1时, ζ ( 1 ) \zeta(1) ζ(1)为调和级数,其以对数方式发散。实际上
ln ⁡ ( x ) = ∫ 1 x 1 t d t \ln(x) = \int_1^x\frac{1}{t}dt ln(x)=1xt1dt
为了干掉连乘积,两边取对数就有
ln ⁡ ( ∑ n 1 n ) = − ∑ p ln ⁡ ( 1 − 1 p ) \ln(\sum_n\frac{1}{n}) = -\sum_p\ln(1 - \frac{1}{p}) ln(nn1

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要了解黎曼 zeta 函数的定义: $$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}$$ 其中,$s$ 是一个复数。当 $s$ 的实部大于 $1$ 时,黎曼 zeta 函数是收敛的。当 $s=1$ 时,黎曼 zeta 函数的值为无穷大。 黎曼 zeta 函数的一个重要性质是,它可以被解析延拓到整个复平面,除了 $s=1$ 这个点存在一个极点。具体来说,黎曼 zeta 函数可以被写成以下形式: $$\zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^x-1}\mathrm{d}x$$ 其中,$\Gamma(s)$ 是欧拉伽玛函数。 接下来,我们来证明素数的频率与黎曼 zeta 函数的零点相关。为此,我们需要引入另一个函数 $\psi(x)$,它被定义为: $$\psi(x)=\sum_{n\leq x}\Lambda(n)$$ 其中,$\Lambda(n)$ 表示 n 的 von Mangoldt 函数,即: $$\Lambda(n)=\begin{cases}\ln p, & \text{if }n=p^k\text{ for some prime }p\text{ and integer }k\geq 1\\0, & \text{otherwise}\end{cases}$$ 通过分部积分,可以得到: $$\psi(x)=x-\sum_{\rho}\frac{x^{\rho}}{\rho}-\ln 2\pi-\frac{1}{2}\ln(1-x^{-2})$$ 其中,$\rho$ 是黎曼 zeta 函数的零点。 接下来,我们需要证明的是,当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 其中,“$\sim$”表示“渐进等于”。 这个结论可以通过黎曼-底格尔公式得到。黎曼-底格尔公式是一个重要的数学公式,它描述了黎曼 zeta 函数与素数分布之间的关系。具体来说,黎曼-底格尔公式可以写成以下形式: $$\pi(x)=\text{li}(x)+O\left(\frac{x}{\ln x}\right)$$ 其中,$\text{li}(x)$ 是对数积分函数,$O\left(\frac{x}{\ln x}\right)$ 是渐进符号,表示当 $x$ 趋近于正无穷时,剩余的误差可以被一个与 $\frac{x}{\ln x}$ 同阶的函数所控制。 我们可以对黎曼-底格尔公式进行微调,得到: $$\psi(x)=\text{li}(x)-\sum_{p}\text{li}(x^{1/p})-\ln 2-\frac{1}{2}\ln(1-x^{-2})+O\left(\frac{x}{\ln x}\right)$$ 其中,$p$ 是素数。这个公式的证明可以参考数论中的相关文献。 接下来,我们证明当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 我们可以先证明当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是比较小的。具体来说,根据定义,$\text{li}(x)$ 可以写成以下积分的形式: $$\text{li}(x)=\int_{2}^{x}\frac{\mathrm{d}t}{\ln t}$$ 通过分部积分,可以得到: $$\text{li}(x)=\frac{x}{\ln x}-\int_{2}^{x}\frac{\mathrm{d}t}{\ln^2 t}+\frac{2}{\ln 2}$$ 因此,当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。 接下来,我们证明当 $x$ 趋近于正无穷时,$\sum_{p}\text{li}(x^{1/p})$ 与 $x$ 的差距也是比较小的。具体来说,我们可以写出: $$\sum_{p}\text{li}(x^{1/p})\leq\sum_{n}\text{li}(x^{1/n})=\sum_{n}\int_{2}^{x^{1/n}}\frac{\mathrm{d}t}{\ln t}=\sum_{n}\frac{x^{1/n}}{n\ln x}=O\left(\frac{x}{\ln x}\right)$$ 其中,第一个等式是因为 $\text{li}(x^{1/n})$ 可以看成是 $\text{li}(y)$,其中 $y$ 是满足 $y^n=x$ 的最小整数;第二个等式是通过换元积分得到的;第三个等式是通过级数展开得到的。 因此,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。这意味着,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 是同阶的,即: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 因此,我们证明了素数的频率与黎曼 zeta 函数的零点分布相关的结论。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值