黎曼的zeta函数(1)

这篇博客探讨了黎曼ζ函数的欧拉乘积公式及其与素数定理的关系。通过Möbius函数的引入,解释了ζ函数的展开,并展示了如何推导素数定理。此外,还讨论了Dirichlet卷积的概念,包括其定义、性质和一些例子。黎曼ζ函数的发展部分提到了Mellin变换和辅助函数ξ,这些工具用于深入理解ζ函数与素数分布的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇是黎曼 ζ \zeta ζ函数系列的第二篇,传送门在此书接上回,让我们继续出发。
如果你已读完本篇,请移步第三篇

欧拉乘积公式

著名的欧拉乘积公式
ζ ( s ) = ∑ n = 1 ∞ 1 n s = ∏ p 1 1 − 1 p s \zeta(s) = \sum_{n = 1}^\infin \frac{1}{n^s} = \prod_p\frac{1}{1 - \frac{1}{p^s}} ζ(s)=n=1ns1=p1ps11
揭开了素数分布秘密的一角。证明思路如下,由
ζ ( s ) = 1 1 s + 1 2 s + 1 3 s + ⋯ \zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots ζ(s)=1s1+2s1+3s1+
两边乘以 1 2 s \frac{1}{2^s} 2s1就得到
1 2 s ζ ( s ) = 1 2 s + 1 4 s + 1 6 s + ⋯ \frac{1}{2^s}\zeta(s) = \frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{6^s} + \cdots 2s1ζ(s)=2s1+4s1+6s1+
两式相减得(减掉所有2的倍数项)
( 1 − 1 2 s ) ζ ( s ) = 1 1 s + 1 3 s + 1 5 s + ⋯ (1 - \frac{1}{2^s})\zeta(s) = \frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + \cdots (12s1)ζ(s)=1s1+3s1+5s1+
两边乘以 1 3 s \frac{1}{3^s} 3s1就得到
1 3 s ( 1 − 1 2 s ) ζ ( s ) = 1 3 s + 1 9 s + 1 1 5 s + ⋯ \frac{1}{3^s}(1 - \frac{1}{2^s})\zeta(s) = \frac{1}{3^s} + \frac{1}{9^s} + \frac{1}{15^s} + \cdots 3s1(12s1)ζ(s)=3s1+9s1+15s1+
再相减就得到(减掉所有3的倍数项)
( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 1 s + 1 5 s + 1 7 s + ⋯ (1 - \frac{1}{3^s})(1 - \frac{1}{2^s})\zeta(s) = \frac{1}{1^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots (13s1)(12s1)ζ(s)=1s1+5s1+7s1+
两边乘以 1 5 s \frac{1}{5^s} 5s1再相减(减掉所有5的倍数项),如此这般下去,干掉右边所有得项,最终得到
⋯ ( 1 − 1 5 s ) ( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 \cdots(1 - \frac{1}{5^s})(1 - \frac{1}{3^s})(1 - \frac{1}{2^s})\zeta(s) = 1 (15s1)(13s1)(12s1)ζ(s)=1
不难发现,乘到左边的项都是素数项,所以就有
ζ ( s ) = ∏ p 1 1 − 1 p s \zeta(s) = \prod_p\frac{1}{1 - \frac{1}{p^s}} ζ(s)=p1ps11

Möbius函数

让我们尝试展开上式的右侧,得到
1 ζ ( s ) = ( 1 − 1 2 s ) ( 1 − 1 3 s ) ( 1 − 1 5 s ) ( 1 − 1 7 s ) ⋯ = 1 − 1 2 s − 1 3 s − 1 5 s + 1 6 s − 1 7 s + ⋯ \frac{1}{\zeta(s)} = (1 - \frac{1}{2^s})(1 - \frac{1}{3^s})(1 - \frac{1}{5^s})(1 - \frac{1}{7^s})\cdots \\ = 1 - \frac{1}{2^s} - \frac{1}{3^s} - \frac{1}{5^s} + \frac{1}{6^s} - \frac{1}{7^s} + \cdots ζ(s)1=(12s1)(13s1)(15s1)(17s1)=12s13s15s1+6s17s1+
如果把这个级数写成Dirichlet级数
1 ζ ( s ) = ∑ n a n n s \frac{1}{\zeta(s)} = \sum_n\frac{a_n}{n^s} ζ(s)1=nnsan
的形式,就会有当 n n n为偶数个不同素数乘积时 a n = 1 a_n = 1 an=1,当 n n n为奇数个不同素数乘积时 a n = − 1 a_n = -1 an=1,而当 n n n可被某一素数的平方整除时 a n = 0 a_n = 0 an=0. 我们就定义这样的 a n a_n an为Möbius函数,记为 μ ( n ) \mu(n) μ(n),于是
1 ζ ( s ) = ∑ n μ ( n ) n s \frac{1}{\zeta(s)} = \sum_n\frac{\mu(n)}{n^s} ζ(s)1=nnsμ(n)
容易验证Möbius函数是积性函数,也就是说 μ ( 1 ) = 1 \mu(1) = 1 μ(1)=1,且当 a ,   b a, ~ b a, b互质时, μ ( a b ) = μ ( a ) μ ( b ) \mu(ab) = \mu(a)\mu(b) μ(ab)=μ(a)μ(b).

素数定理

欧拉注意到,当 s = 1 s = 1 s=1时, ζ ( 1 ) \zeta(1) ζ(1)为调和级数,其以对数方式发散。实际上
ln ⁡ ( x ) = ∫ 1 x 1 t d t \ln(x) = \int_1^x\frac{1}{t}dt ln(x)=1xt1dt
为了干掉连乘积,两边取对数就有
ln ⁡ ( ∑ n 1 n ) = − ∑ p ln ⁡ ( 1 − 1 p ) \ln(\sum_n\frac{1}{n}) = -\sum_p\ln(1 - \frac{1}{p}) ln(nn1)=pln(1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值