黎曼ζ函数(中文维基百科)

9 篇文章 0 订阅
9 篇文章 0 订阅

黎曼ζ函数,中文维基百科
黎曼 ζ ζ ζ函数 ζ ( s ) ζ(s) ζ(s)的定义如下: 设一复数 s s s,其实数部分 > 1 > 1 >1,而且:

ζ ( s ) = ∑ n = 1 ∞ 1 n s \zeta(s) =\sum_{n=1}^\infin \frac{1}{n^s} ζ(s)=n=1ns1

它亦可以用积分定义:

ζ ( s ) = 1 Γ ( s ) ∫ 0 ∞ x s − 1 e x − 1 d x \zeta(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x ^ {s-1}}{e ^ x - 1} \mathrm{d}x ζ(s)=Γ(s)10ex1xs1dx

在区域 s : R e ( s ) > 1 {s : Re(s) > 1} s:Re(s)>1上,此无穷级数收敛并为一全纯函数(其中 R e Re Re表示复数的实部,下同)。欧拉在1740年考虑过 s s s为正整数的情况,后来切比雪夫拓展到 s > 1 s>1 s>1。[2]波恩哈德·黎曼认识到: ζ ζ ζ 函数可以通过解析开拓来扩展到一个定义在复数域 ( s , s ≠ 1 ) (s, s≠ 1) (s,s=1)上的全纯函数 ζ ( s ) ζ(s) ζ(s)。这也是黎曼猜想所研究的函数。

虽然黎曼的 ζ ζ ζ 函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齐夫定律(Zipf’s Law)和齐夫-曼德尔布罗特定律(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。

目录

1 历史
1.1 奥里斯姆
1.2 欧拉
1.3 黎曼
1.4 阿达马与普森
1.5 希尔伯特
1.6 玻尔与兰道
1.7 哈代与李特尔伍德
1.8 塞尔伯格
2 解析延拓
3 和数论函数的关系
4 佩龙公式
5 和素数的关系
5.1 欧拉乘积
5.2 更进一步的联系
5.2.1 黎曼阶梯素数计数函数
5.2.2 切比雪夫函数
6 零点
7 函数值
7.1 当s为正整数
7.2 s趋近于1
7.3 负整数
7.4 复数值
7.5 幅角
7.6 函数值表
7.7 临界线上的数值计算
8 参考资料
9 相关条目

请点这里:黎曼ζ函数,中文维基百科

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要了解黎曼 zeta 函数的定义: $$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}$$ 其中,$s$ 是一个复数。当 $s$ 的实部大于 $1$ 时,黎曼 zeta 函数是收敛的。当 $s=1$ 时,黎曼 zeta 函数的值为无穷大。 黎曼 zeta 函数的一个重要性质是,它可以被解析延拓到整个复平面,除了 $s=1$ 这个点存在一个极点。具体来说,黎曼 zeta 函数可以被写成以下形式: $$\zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^x-1}\mathrm{d}x$$ 其中,$\Gamma(s)$ 是欧拉伽玛函数。 接下来,我们来证明素数的频率与黎曼 zeta 函数的零点相关。为此,我们需要引入另一个函数 $\psi(x)$,它被定义为: $$\psi(x)=\sum_{n\leq x}\Lambda(n)$$ 其中,$\Lambda(n)$ 表示 n 的 von Mangoldt 函数,即: $$\Lambda(n)=\begin{cases}\ln p, & \text{if }n=p^k\text{ for some prime }p\text{ and integer }k\geq 1\\0, & \text{otherwise}\end{cases}$$ 通过分部积分,可以得到: $$\psi(x)=x-\sum_{\rho}\frac{x^{\rho}}{\rho}-\ln 2\pi-\frac{1}{2}\ln(1-x^{-2})$$ 其中,$\rho$ 是黎曼 zeta 函数的零点。 接下来,我们需要证明的是,当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 其中,“$\sim$”表示“渐进等于”。 这个结论可以通过黎曼-底格尔公式得到。黎曼-底格尔公式是一个重要的数学公式,它描述了黎曼 zeta 函数与素数分布之间的关系。具体来说,黎曼-底格尔公式可以写成以下形式: $$\pi(x)=\text{li}(x)+O\left(\frac{x}{\ln x}\right)$$ 其中,$\text{li}(x)$ 是对数积分函数,$O\left(\frac{x}{\ln x}\right)$ 是渐进符号,表示当 $x$ 趋近于正无穷时,剩余的误差可以被一个与 $\frac{x}{\ln x}$ 同阶的函数所控制。 我们可以对黎曼-底格尔公式进行微调,得到: $$\psi(x)=\text{li}(x)-\sum_{p}\text{li}(x^{1/p})-\ln 2-\frac{1}{2}\ln(1-x^{-2})+O\left(\frac{x}{\ln x}\right)$$ 其中,$p$ 是素数。这个公式的证明可以参考数论中的相关文献。 接下来,我们证明当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 我们可以先证明当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是比较小的。具体来说,根据定义,$\text{li}(x)$ 可以写成以下积分的形式: $$\text{li}(x)=\int_{2}^{x}\frac{\mathrm{d}t}{\ln t}$$ 通过分部积分,可以得到: $$\text{li}(x)=\frac{x}{\ln x}-\int_{2}^{x}\frac{\mathrm{d}t}{\ln^2 t}+\frac{2}{\ln 2}$$ 因此,当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。 接下来,我们证明当 $x$ 趋近于正无穷时,$\sum_{p}\text{li}(x^{1/p})$ 与 $x$ 的差距也是比较小的。具体来说,我们可以写出: $$\sum_{p}\text{li}(x^{1/p})\leq\sum_{n}\text{li}(x^{1/n})=\sum_{n}\int_{2}^{x^{1/n}}\frac{\mathrm{d}t}{\ln t}=\sum_{n}\frac{x^{1/n}}{n\ln x}=O\left(\frac{x}{\ln x}\right)$$ 其中,第一个等式是因为 $\text{li}(x^{1/n})$ 可以看成是 $\text{li}(y)$,其中 $y$ 是满足 $y^n=x$ 的最小整数;第二个等式是通过换元积分得到的;第三个等式是通过级数展开得到的。 因此,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。这意味着,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 是同阶的,即: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 因此,我们证明了素数的频率与黎曼 zeta 函数的零点分布相关的结论。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值