【无标题】

判断一个数学概念是不是集合

pre:概念的分类

概念分为原始概念(也叫做“不定义概念”)和派生概念
其中原始概念指无法用其他概念来描述的概念,派生概念指由其他已经存在的概念定义出的概念。
集合是原始概念,康托定义为:集合是人们能够明确区分的一些对象(客体)构成的一个整体。
解读:客体是元素,整体是集合,整体包括个体,个体组成整体,且需要明确区分。

由集合的概念推广出的性质判断

  1. 确定性:表现在两方面。第一:对于任意一个元素,只存在属于集合A和不属于集合A两种情况,后面对应于排中律(非黑即白)。第二:对描述法描述集合时谓词要确定客观,不能以“x很美丽”之类的谓词P(x)来确定。
  2. 无序性:{1,2,3}={2,1,3}
  3. 互异性:{a,a,b,b,c,c,c,c,c}={a,b,c}

罗素悖论

不能取P(x) 为 x ∉ \notin /x这样的谓词来定义集合。
证明:假设T={x|x ∉ \notin /x},则x ∈ \isin T    ⟺    \iff x ∉ \notin /x;
将T代入x,则 T ∈ \isin T    ⟺    \iff T ∉ \notin /T,这明显是一个矛盾的式子,故T不是集合。

所谓的说说谎者悖论,理发师悖论等等都是等价于这种情况。
说谎者悖论:我说的这句话是假话。
理发师悖论:一位乡村理发师宣称他不给村子里任何自 己理发的人理发,但给所有不自己理发的人理发。有人问:理发师先生,您给自己理发吗?

说谎者悖论证明:如果我说的话是假话,那这句话是假的,我说的这句话就变成了真话,则与条件矛盾(这是具有循环性质的非直谓定义,即用总体定义概念,而概念又属于总体,如果总体定义中存在反逻辑,那将一直”负负得正”)

理发师悖论证明:把每个人看成一个集合:其理发的对象作为元素(这里已经看出存在类似于递归的子引用,可形成类似环状)
x ={ a| x 给 a 理发且a不给a理发}
x 给 a 理发    ⟺    \iff a ∈ \isin x ∧ a∉a
将理发师 b代入人们问的问题: b ∈ \isin b∧b ∉ \notin /b ,矛盾
其本质是自引用和自作用,当一个“集合”能包括自己时又要满足不包括自己的条件就会形成矛盾。





集合与元素,集合之间的关系

集合相等(外延性公理)

设 A, B 为任意两个集合,若A和B含有相同的元素(逐一对应),则称
A和B相等, 记作A=B,
即 A = B    ⟺    \iff ∀ \forall x ( x ∈ \isin A    ⟺    \iff x ∈ \isin B )

A = B    ⟺    \iff ∀ \forall x ( x ∈ \isin A → \to x ∈ \isin B ) ∧ \land ∀ \forall x ( x ∈ \isin B → \to x ∈ \isin A )

子集或包含、真包含

若集合A的每一个元素都是集合B 的元素,则称A是B的子集,也称A包含于B或B包含A。记作A⊂B(下面还有一横打不出来,这个是真包含),即 ∀ \forall x ( x ∈ \isin A → \to x ∈ \isin B )
设 A, B是任意集合,若 A包含于B 且 A≠B,则称 A为B的真子集,也称 A 真包含于B,或 B真包含A。 记作:A ⊂ \subset B 或 B ⊃ \supset A,
即 A ⊂ \subset B    ⟺    \iff ∀ \forall x ( x ∈ \isin A → \to x ∈ \isin B ) ∧ \land ∃ \exist x(x ∈ \isin A ∧ \land x ∉ \notin / B )
显然在这里插入图片描述



笔者用维度的概念来描述集合,元素是低维度,元素所在集合比元素高一个维度。这个说法后面还有遇到

根据这个说法,我们可以得到:

  1. 元素与集合之间用 ∈ \isin 表示关系,是从低维到高维的。
  2. ⊂ \subset 表示集合与集合之间关系,是同维度的。

这两种关系可以同时成立,不受限制,没有相互制约和冲突。

集合相等

设 A, B 是两个集合,则A = B 当且仅当A包含于B且B包含于A .
这个很重要,是我们证明集合相等基础理论的重要方法之元素分析法

在这里插入图片描述
此外,集合的包含和等于关系具有传递性,不再证明。

全集和空集

如果所讨论的集合,都是某一固定集合U的子集,称集合U为全集,在逻辑上对应1。
不含有任何元素的集合称为空集, 记作 ∅ \emptyset ,在逻辑上对应0。

  1. 空集是任何集合的子集(更进一步,非空集合的真子集,空集的子集)

证明方式一:
假设存在集合A,使得 ∅ \emptyset 是A的子集不成立,
则必存在某个元素 a ∈ \isin ∅ \emptyset 且 a ∉ \notin /A, 与 ∅ \emptyset 为空集矛盾

证明方式二:假设存在集合A,使得是A的子集不成立,
则必存在某个元素 a且 aA, 与为空集矛盾

  1. 全集是相对的,可以随着研究对象的不同任意选取;而空集是唯一的,证明方式就是利用空集是任何集合的子集,任取两个空集empty1和empty2,根据性质,他们互相包含,则他们相同,故任意空集都是相同的,即空集是唯一的

  2. 千万要注意,空集是任意集合的子集表示空集和其他集合是同维度的,除非其他集合中写明空集(这个集合以集合为元素之一),否则其他集合不含有叫做空集的元素(不同维度)。千万不可以认为空集是其他集合中省略没写的元素!!!



幂集

pre:集类(集合族)

定义:如果一个集合的所有元素都是集合,则称该集合为集类。
集合 A 的全部子集构成的集合称 为A的幂集, 记作 P(A),即
在这里插入图片描述
根据定义得出性质如下:
在这里插入图片描述

从定义可以看出,幂集是集类,是集合之上的一个维度

算法:可以用一个二进制数来表示幂集中的集合元素,不存在的集合中的元素写0,反之写1,可以构造出一个二进制编码来表示幂集的各个元素,00000…表示空集,11111…表示被幂集符号操作的对象集合(这个集合就是定义中的A)。

重要性质和证明

在这里插入图片描述




重要推论

在这里插入图片描述

在这里插入图片描述
这是我的证明,不算很好,但应该没有错误。




有穷集合的基数

有穷集合A中所含有元素的个数称为 A 的基数。 记作 #A(或|A|,n(A))。

满足在这里插入图片描述
可以从组合数的角度,也可以从二进制码的角度认识

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值