机器学习专栏综述

专栏说明

首先要对许多被机器学习字样吸引过来的读者道歉,因为机器学习学科知识无有尽涯而作者本人才资有限,故所讲之内容一来窄,二来浅;在窄与浅之间,作者本人更倾向于取窄求深,不求问道多寡,但探极致;因此作者本人对专栏的要求如下【重要性不按序号排序】:

  1. 专业性高:专业人士讲专业知识,才不会误人子弟,作者将着重讲授图像降维领域的传统机器学习方法
  2. 重点突出:机器学习的算法难点在数学,对问题以及思路数学化乃至建立数学模型是其重点;
  3. 排版简洁:再好的内容,没有合适的表现方式效果也不会很佳,作者倾向于简洁干练,忠于逻辑的排版;
  4. 实例讲解:数少形时少直觉,理论与编程要结合起来,通过实例来产生对算法的直观印象。

降维简介

背景

周志华老师的西瓜书[1]第十章降维与度量学习中指出,许多分类学习方法会要求样本满足密采样条件,而在样本特征(属性)较多,通常成千上万时,需要的样本数将是一个天文数字;另外就是高维数据在计算距离时会产生巨大的计算开销。这种,在高维情形下出现的数据样本稀疏、距离计算困难等问题,被称为“维数灾难(curse of dimensionality)”。缓解维数灾难的常用方法便是降维技术(Dimensionality Reduction Techniques)

技术流派

下图是降维技术的分类示意图[2]。

降维技术流派

参考文献

[1]周志华.机器学习[M].清华大学出版社,2016:425.
[2]https://www.jqr.com/article/000439
[3]https://mp.weixin.qq.com/s?__biz=MzU4MjQ3MDkwNA==&mid=2247489474&idx=1&sn=933fa4fa723078b95de4607d54ff553b&chksm=fdb68a55cac10343a1e3ad4397a2596c7774b5226d6ed1848c4f817d310133e77e0e13887882&mpshare=1&scene=23&srcid=#rd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值