证明:方阵的迹等于其特征值之和

要证明方阵的迹等于其特征值之和,我们可以通过以下几个步骤进行推导。

定义

  1. 方阵的迹:对于一个 n×n 的方阵 A,其迹定义为矩阵主对角线元素的和:

    \text{tr}(A) = \sum_{i=1}^{n} a_{ii}
  2. 特征值:方阵 AAA 的特征值是满足特征方程的数:

    \det(A - \lambda I) = 0

    \lambda_1, \lambda_2, \ldots, \lambda_n 是 A 的特征值。

证明步骤

  1. 特征多项式:矩阵 A 的特征多项式为:

    p(\lambda) = \det(A - \lambda I)

    这个多项式是一个 n 次多项式,可以写为:

    p(\lambda) = (-1)^n (\lambda^n + c_{n-1} \lambda^{n-1} + \ldots + c_0)

    其中 c_{n-1} 是关于矩阵 A 的迹的一个函数。

  2. 特征值与迹的关系:根据特征多项式的系数,c_{n-1} 是特征值的和的负数,且有:

    c_{n-1} = -(\lambda_1 + \lambda_2 + \ldots + \lambda_n)
  3. 利用行列式: 从 p(λ) 的展开式中,可以得到:

    \text{tr}(A) = -c_{n-1}

    这意味着:

    \text{tr}(A) = \lambda_1 + \lambda_2 + \ldots + \lambda_n

结论

综上所述,我们得出结论:方阵 A 的迹等于其特征值之和,即:

\text{tr}(A) = \lambda_1 + \lambda_2 + \ldots + \lambda_n

这个结论在矩阵理论和线性代数中是非常重要的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值