要证明方阵的迹等于其特征值之和,我们可以通过以下几个步骤进行推导。
定义
-
方阵的迹:对于一个 n×n 的方阵 A,其迹定义为矩阵主对角线元素的和:
-
特征值:方阵 AAA 的特征值是满足特征方程的数:
设
是 A 的特征值。
证明步骤
-
特征多项式:矩阵 A 的特征多项式为:
这个多项式是一个 n 次多项式,可以写为:
其中
是关于矩阵 A 的迹的一个函数。
-
特征值与迹的关系:根据特征多项式的系数,
是特征值的和的负数,且有:
-
利用行列式: 从 p(λ) 的展开式中,可以得到:
这意味着:
结论
综上所述,我们得出结论:方阵 A 的迹等于其特征值之和,即:
这个结论在矩阵理论和线性代数中是非常重要的。