【GNSS】RTKLIB 中 LAMBDA 搜索整周模糊度的算法实现

Part.I Introdction

本篇博文的目的是:对RTKLIBLAMBDA固定整周模糊度的算法实现做一个尽量详尽的总结。由于笔者水平有限,不当之处还望不吝赐教。

Chap.I 预备知识

LAMBDA 全称 Least-square AMBiguity Decorrelation Adjustment,最小二乘降相关平差。主要分为以下两步:(1)为降低模糊度参数之间相关性而进行的多维整数变换;(2)在转换后的空间内进行模糊度搜索,然后再将结果转换回模糊度空间中,进而求得模糊度整数解。详细的原理可以参看[2],本文主要介绍 RTKLIB 中有关 LAMBDA 搜索的实现,并附以一个示例进行验证。

Chap.II 内容概览

下面的讲的内容,后来看的时候觉得比较多,就整理了一下,做了个图,比较直观,如下。

在这里插入图片描述
若有错误之处,烦请告知,原图位于 GREAT.drawio/draft

Part.II 代码详解

RTKLIB 中的 LAMBDA 实现是在lambda.c文件中的,里面主要的函数有

  • lambda:外部交互接口,相当于主控制函数
  • LD:LTDL 分解,注意是上三角分解
  • gauss:整数高斯变换
  • perm:permutation 置换排列,难道是转置?没看懂
  • reduction:求出降相关矩阵 Z
  • search:MLAMBDA (修正的 LAMBDA)搜索
  • matmul:降相关,得到的 Z 和浮点模糊度 a ^ \hat a a^ 和方差-协方差矩阵 Q a ^ Q_{\hat a} Qa^ 相乘得到变换后的浮点模糊度 z ^ \hat z z^ 及其方差-协方差矩阵 Q z ^ Q_{\hat z} Qz^
  • solve:变换回去,得到所需要的候选模糊度

下面是几个主要的函数传参

Chap.I lambda

extern int lambda(int n, int m, const double *a, const double *Q, double *F,double *s)
  • n: @param[in] 待固定的模糊度个数
  • m: @param[in] 待搜索的候选模糊度向量个数
  • a: @param[in] 实数模糊度向量n*1
  • Q: @param[in] 方差-协方差矩阵n*n
  • F: @param[out] 候选模糊度组m*n
  • s: @param[out] 整数模糊度向量与实数模糊向量的距离(二次方残差)m*1

RTKLIB 中的 lambda 函数内容如下:

extern int lambda(int n, int m, const double *a, const double *Q, double *F,
                  double *s)
{
    int info;
    double *L,*D,*Z,*z,*E;
    
    if (n<=0||m<=0) return -1;
    L=zeros(n,n); D=mat(n,1); Z=eye(n); z=mat(n,1); E=mat(n,m);
    
    /* LD factorization */
    if (!(info=LD(n,Q,L,D))) {
        
        /* lambda reduction */
        reduction(n,L,D,Z);
        matmul("TN",n,1,n,1.0,Z,a,0.0,z); /* z=Z'*a */
        
        /* mlambda search */
        if (!(info=search(n,m,L,D,z,E,s))) {
            // F 搜出来的备选模糊度
            info=solve("T",Z,E,n,m,F); /* F=Z'\E */
        }
    }
    free(L); free(D); free(Z); free(z); free(E);
    return info;
}

各个步骤很清晰的呈现在代码中,牛的。

Chap.II LD

static int LD(int n, const double *Q, double *L, double *D)
  • @note Q a ^ a ^ = U D U T Q_{\hat a \hat a}=UDU^T Qa^a^=UDUT,实际上 U 在函数中是用 L 表示的
  • n: @param[in] 待固定的模糊度个数
  • Q: @param[in] 方差-协方差矩阵n*n
  • L: @param[out]Q分解得到的上三角矩阵n*n,实际上用U表示更合适,因为是上三角阵
  • D: @param[out]Q分解得到的对角矩阵,只保留了对角线元素1*n

Chap.III reduction

static void reduction(int n, double *L, double *D, double *Z)
  • @note 得到整数高斯变换阵(降相关阵)Z, Q z ^ z ^ = Z Q a ^ a ^ Z T = L z D L z T Q_{\hat z \hat z}=ZQ_{\hat a \hat a}Z^T=L_zDL_z^T Qz^z^=ZQa^a^ZT=LzDLzT
  • n: @param[in] 待固定的模糊度个数
  • L: @param[in/out]Q分解得到的上三角矩阵n*n传出前后会发生变化
  • D: @param[in/out]Q分解得到的对角矩阵,只保留了对角线元素1*n传出前后会发生变化
  • Z: @param[out] 降相关矩阵Z阵,n*nZ的所有元素都是整数,并且其行列式为1
  • @notereduction 函数中调用了gaussperm,对它们的理解还需进一步加强。

Chap.IV search

static int search(int n, int m, const double *L, const double *D, const double *zs, double *zn, double *s)
  • n: @param[in] 待固定的模糊度个数
  • m: @param[in] 待搜索的候选模糊度向量组个数
  • L: @param[in]Q分解得到的上三角矩阵n*n,并且经过reduction处理
  • D: @param[in]Q分解得到的对角矩阵,只保留了对角线元素1*n,并且经过reduction处理,目前存在如下关系: Q z ^ z ^ = Z Q a ^ a ^ Z T = L z D L z T Q_{\hat z \hat z}=ZQ_{\hat a \hat a}Z^T=L_zDL_z^T Qz^z^=ZQa^a^ZT=LzDLzT
  • zs: @param[in] 降相关后的浮点模糊度 z ^ \hat z z^ n*1
  • zn: @param[out] 搜索到的候选模糊度向量组 m*n
  • s: @param[out] 各候选模糊度向量到浮点模糊度向量的距离 m*1
    s = ( z ˉ − z ^ ) T Q z ^ z ^ − 1 ( z ˉ − z ^ ) = ( a ˉ − a ^ ) T Q a ^ a ^ − 1 ( a ˉ − a ^ ) s=(\bar z-\hat z)^TQ_{\hat z\hat z}^{-1}(\bar z-\hat z)=(\bar a-\hat a)^TQ_{\hat a\hat a}^{-1}(\bar a-\hat a) s=(zˉz^)TQz^z^1(zˉz^)=(aˉa^)TQa^a^1(aˉa^)

Chap.V matmul & solve

这两个函数实际上是通用函数,在这里充当矩阵变换的作用。

matmul("TN", n, 1, n, 1.0, Z, a, 0.0, z);

这个函数的作用是得到降相关后的浮点模糊度向量(实际上是降相关矩阵与原浮点模糊度向量的乘积) z ^ = Z a ^ \hat z=Z\hat a z^=Za^

solve("T", Z, E, n, m, F);

这个函数将搜索得到的 z ˉ \bar z zˉ 的集合 E 转换回去得到 a ˉ \bar a aˉ 的集合 F。

F = Z − 1 E F=Z^{-1}E F=Z1E

Part.III 一个实例

下面考虑一个三维的情况:
在这里插入图片描述

Chap.I 测试函数

笔者将RTKLIB有关LAMBDA搜索的程序移植到C++程序中,写了如下的测试代码:

void t_gtest::RLAMBDA_test() {

    t_glambda2* lambda = new t_glambda2();
    int n = 3, m = 7, iN = n, iMaxCan = m;
    double a[3] = { 5.45,3.10,2.97 };
    double Q[9] = { 6.290,5.978,0.544, 5.978,6.292,2.340, 0.544,2.340,6.288 };

    int piA[3] = { 0 };
    /*for (int i = 0; i < iN; i++) {
        piA[i] = round(pdA[i]);
        pdA[i] -= piA[i];
    }*/
    cout << "原始方差-协方差矩阵:" << endl;
    printArr(Q, iN, iN);
    cout << "浮点模糊度:" << endl;
    printArr(a, 1, iN);
    cout << "-----------------------------------" << endl;

    double s[8] = { 0 };
    double* F = new double[iN * iMaxCan]{ 0 };
    int info;
    double* L, * D, * Z, * z, * E;

    L = lambda->zeros(n, n); D = lambda->mat(n, 1); Z = lambda->eye(n); 
    z = lambda->mat(n, 1); E = lambda->mat(n, m);

    /* LD factorization */
    if (!(info = lambda->LD(n, Q, L, D))) {
        cout << "-----------------------------------" << endl;
        cout << "LD 之后 L 阵:" << endl;
        printArr(L, iN, iN);
        cout << "LD 之后 D 阵:" << endl;
        printArr(D, 1, iN);
        /* lambda reduction */
        lambda->reduction(n, L, D, Z);
        cout << "-----------------------------------" << endl;
        cout << "reduction 之后 L 阵:" << endl;
        printArr(L, iN, iN);
        cout << "reduction 之后 D 阵:" << endl;
        printArr(D, 1, iN);
        cout << "reduction 之后 Z 阵:" << endl;
        printArr(Z, iN, iN);
        lambda->matmul("TN", n, 1, n, 1.0, Z, a, 0.0, z); /* z=Z'*a */
        cout << "-----------------------------------" << endl;
        cout << "matmul 之后 z 阵:" << endl;
        printArr(z, 1, iN);
        cout << "matmul 之后 a 阵:" << endl;
        printArr(a, 1, iN);
        cout << "matmul 之后 Z 阵:" << endl;
        printArr(Z, iN, iN);
        /* mlambda search */
        if (!(info = lambda->search(n, m, L, D, z, E, s))) {
            cout << "-----------------------------------" << endl;
            cout << "search 之后 E 阵:" << endl;
            printArr(E, m, n);
            cout << "search 之后 s 阵:" << endl;
            printArr(s, 1, m);
            cout << "search 之后 z 阵:" << endl;
            printArr(z, 1, iN);
            info = lambda->solve("T", Z, E, n, m, F); /* F=Z'\E */
            cout << "-----------------------------------" << endl;
            cout << "solve 之后 F 阵:" << endl;
            printArr(F, m, n);
            cout << "solve 之后 E 阵:" << endl;
            printArr(E, m, n);
            cout << "solve 之后 Z 阵:" << endl;
            printArr(Z, n, n);
        }
    }
    free(L); free(D); free(Z); free(z); free(E); free(F);

    if (lambda != NULL)
    {
        delete lambda;
        lambda = NULL;
    }
}

Chap.II 结果输出

程序运行之后有如下输出:

原始方差-协方差矩阵:
6.29  5.978  0.544  
5.978  6.292  2.34  
0.544  2.34  6.288  
浮点模糊度:
5.45  3.1  2.97  
-----------------------------------
-----------------------------------
LD 之后 L 阵:
1  1.06537  0.086514  
0  1  0.372137  
0  0  1  
LD 之后 D 阵:
0.0898576  5.4212  6.288  
-----------------------------------
reduction 之后 L 阵:
1  0.267668  0.367412  
0  1  0.13099  
0  0  1  
reduction 之后 D 阵:
4.31016  1.13526  0.626  
reduction 之后 Z 阵:
-2  3  -1  
3  -3  1  
1  -1  0  
-----------------------------------
matmul 之后 z 阵:
-4.57  10.02  2.35  
matmul 之后 a 阵:
5.45  3.1  2.97  
matmul 之后 Z 阵:
-2  3  -1  
3  -3  1  
1  -1  0  
-----------------------------------
search 之后 E 阵:
-5  10  2  
-4  10  2  
-6  10  2  
-4  10  3  
-5  10  3  
-3  10  2  
-5  9  2  
search 之后 s 阵:
0.218331  0.307273  0.59341  0.714614  0.77989  0.860234  1.03198  
search 之后 z 阵:
-4.57  10.02  2.35  
-----------------------------------
solve 之后 F 阵:
5  3  4  
6  4  4  
4  2  4  
6  3  1  
5  2  1  
7  5  4  
4  2  3  
solve 之后 E 阵:
-5  10  2  
-4  10  2  
-6  10  2  
-4  10  3  
-5  10  3  
-3  10  2  
-5  9  2  
solve 之后 Z 阵:
-2  3  -1  
3  -3  1  
1  -1  0  

Chap.III 结果分析 & 验证

结合程序输出,对结果用 Matlab 进行了验证

验证代码如下:

%% -------- RTKLIB 检验 --------
clc;clear
a_hat=[5.45,3.10,2.97]';
Q=[6.290 5.978 0.544;5.978 6.292 2.340;0.544 2.340 6.288];
% 原始模糊度方差与相关系数,要看的话记得打断点,后面会覆盖掉
a_11=sqrt(Q(1,1)); ro_12=1/sqrt(Q(1,1)*Q(2,2)/(Q(1,2)*Q(1,2)));
a_22=sqrt(Q(2,2)); ro_13=1/sqrt(Q(1,1)*Q(3,3)/(Q(1,3)*Q(1,3)));
a_33=sqrt(Q(3,3)); ro_23=1/sqrt(Q(2,2)*Q(3,3)/(Q(2,3)*Q(2,3)));

Z2=[-2 3 -1;3 -3 1;1 -1 0]; det(Z2);                % 行列式为 1
U2=[1  1.06537  0.086514; 0  1  0.372137;0  0  1];  % 上三角
D2=diag([0.0898576  5.4212  6.288]);
Q-U2*D2*U2'                                         % UDUT 分解正确性检验,结果为0
z_hat=Z2*a_hat;                                     % 变换之后的浮点模糊度
Q_z=Z2*Q*Z2';                                       % 变换之后的协方差矩阵
% Z变换后的模糊度方差与相关系数
a_11=sqrt(Q_z(1,1)); ro_12=1/sqrt(Q_z(1,1)*Q_z(2,2)/(Q_z(1,2)*Q_z(1,2)));
a_22=sqrt(Q_z(2,2)); ro_13=1/sqrt(Q_z(1,1)*Q_z(3,3)/(Q_z(1,3)*Q_z(1,3)));
a_33=sqrt(Q_z(3,3)); ro_23=1/sqrt(Q_z(2,2)*Q_z(3,3)/(Q_z(2,3)*Q_z(2,3)));
% RTKLIB reduction 函数之后 L 和 D 变为
L_z=[1  0.267668  0.367412;0  1  0.13099;0  0  1 ];
D_z=diag([4.31016  1.13526  0.626]);
Q_z-L_z*D_z*L_z'                                    % Z变换之后正确性检验,结果为0
% 求整数解和浮点解之间的距离
a_bar=[5 3 4]';                                     % 最后得到整数解
z_bar=[-5 10 2]';
(z_bar-z_hat)'*inv(Q_z)*(z_bar-z_hat)               % RTKLIB 吐出的是它
(a_bar-a_hat)'*inv(Q)*(a_bar-a_hat)					% 和上面相等

比较有意思的一点是变换前后搜索空间与各模糊度相关系数的变化,笔者觉得这才是 LAMBDA 的灵魂和精髓。
在这里插入图片描述
在这里插入图片描述
下面是用 Matlab 绘制的三维搜索空间的变化(注意坐标轴刻度和椭球形状)
在这里插入图片描述

Reference

  1. 基于 Matlab 的方差-协方差矩阵可视化表示(椭圆、椭球)
  2. 【GNSS】LAMBDA 模糊度固定方法
  3. Teunnissen P J G. The least-square ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation [J]. J. Geodesy, 1995, 70(1): 65-82.
  4. De Jonge P, Tiberius C. The LAMBDA method for integer ambiguity estimation: implementation aspects[J]. Publications of the Delft Computing Centre, LGR-Series, 1996, 12(12): 1-47.
  • 11
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 9
    评论
### 回答1: 在GPS数据处理整周模糊是指接收机接收到的卫星信号在传播过程,多出来的整数个波长。这个整数有时是不确定的,称为模糊。在信号处理需要解算整周模糊,以获得更精确的位置信息。 lambda方法是一种解算整周模糊方法,其基本原理是利用宽巷和窄巷信号的相位差来消除整周模糊。下面是一个简单的lambda方法解算整周模糊的Python代码示例: ```python import numpy as np def lambda_method(wide_phase, narrow_phase, wavelength): phase_diff = wide_phase - narrow_phase if phase_diff > np.pi: phase_diff -= 2 * np.pi elif phase_diff < -np.pi: phase_diff += 2 * np.pi return round(phase_diff / (2 * np.pi * wavelength)) ``` 其,wide_phase和narrow_phase分别表示宽巷和窄巷信号的相位,单位为弧;wavelength表示信号波长,单位为米。该函数返回一个整数,即整数模糊。 具体的使用方法可以根据具体的应用场景进行调整,包括但不限于读取数据、计算波长等。 ### 回答2: lambda方法是一种匿名函数的定义方式,适用于一些简单的函数操作。在解算整周模糊代码lambda方法可以用来定义一个函数,用于对模糊进行解算。 整周模糊是在GNSS导航常见的一种误差源,其由于接收机的硬件限制或信号传播环境导致了模糊无法精确确定的问题。解算整周模糊是为了提高定位精而进行的一种处理方法lambda方法可以通过定义一个简短的函数,来对接收到的模糊数据进行处理。例如,可以定义一个lambda函数,通过对接收到的整周模糊数据进行取整操作,将其近似为一个整数。 示例代码如下: ``` # 定义lambda函数 solve_ambiguity = lambda x: int(x) # 假设接收到的整周模糊数据为2.5 ambiguity = 2.5 # 调用lambda函数进行处理 resolved_ambiguity = solve_ambiguity(ambiguity) print(resolved_ambiguity) ``` 输出结果为: ``` 2 ``` 通过lambda方法,我们可以很方便地定义一个简单的函数,并对整周模糊数据进行解算。当然,根据具体的求解方法和需求,lambda函数也可以进行更复杂的处理操作,以提高整周模糊的解算精。 ### 回答3: Lambda方法是一种匿名函数的定义方式,可以用于解算整周模糊代码。 在GPS定位领域,整周模糊是指接收机对卫星信号的相位测量结果取整后产生的小数部分,这个小数部分会引入测量误差。因此,需要通过某种方法整周模糊进行解算,以减小定位误差。 Lambda方法是一种基于整周模糊单差观测值的解算方法。它根据静态基线的单差观测值和整周模糊测量值之间的关系,利用最小二乘法求解整周模糊的整数部分。 Lambda方法的原理是通过选择一个合适的整数模糊假设,然后计算与该假设相对应的单差观测值,将单差观测值与实际观测值进行比较,然后调整整数模糊假设,再次计算并比较,直到找到使得单差观测值与实际观测值最接近的整数模糊Lambda方法的优势在于其计算简单快捷,并且具有较高的精。通过使用Lambda方法解算整周模糊代码,可以提高对GPS定位的精和稳定性。 总结起来,Lambda方法是一种运用匿名函数定义的解算整周模糊方法。它通过最小二乘法计算整数模糊的假设值,并与实际观测值进行比较,迭代调整得到最接近的整数模糊。使用Lambda方法可以提高GPS定位的精和稳定性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值