过去的杂记

本文介绍了如何在PyTorch中利用inplace操作节省内存,同时讨论了Wandb在跟踪实验和可视化方面的应用。还详细讲述了在配置RTX30系列显卡环境中,遇到的CUDA版本不兼容及TensorflowGPU安装问题,以及解决方案尝试。
摘要由CSDN通过智能技术生成

在不修改网络结构的情况下,节省内存的方法:

def inplace_relu(m):

classname = m.__class__.__name__

If classname.find(‘ReLU’) != -1:

m.inplace = True # 原地进行操作,操作完成后覆盖原来的变量

pytorch中有许多原地操作,比如:torch.sigmoid,F.relu等。

Wandb(weights&biases)——轻量化可视化工具,是一个类似于tensorboard的在线模型训练可视化工具,可以帮助跟踪实验,记录运行中的超参数和输出指标,可视化结果并共享结果。

randlanet的电脑环境配置:

Python=3.6(name)+Tensorflow-gpu1.13.1+cuda10.0+cudnn7.4在3090上失败!!!!

Failed to run cuBLAS routine cublasSgemm_v2:CUBLAS_STATUS_EXECUTION_FAILED

原因:RTX30系列不支持cuda10,支持CUDA11.1及以上版本。

Python3.7的环境tf2,激活环境,pip install tensorflow-gpu==2.4.1 -i https://pypi.tuna.tsinghua.edu.cn/simple    2.4.1报错(调用不了gpu)

卸载后,尝试tensorflow-gpu==2.6.0(True),进入后那两句代码不太管用。

报错:Error while using Tensorflow:no attribute’variable_scope’                        

dataset.init_input_pipeline()这步进行不下去,还有randlanet.py的train里的出问题

前提:显卡3090、CUDA11.1、

尝试220版本

conda create -n 环境名字 python==3.6/3.7

activate 环境名字

pip install tensorflow-gpu==2.2.0 -i 清华镜像源(https://pypi.tuna.tsinghua.edu.cn/simple)

pip list

python

import tensorflow as tf  无错误提示

tf.test.is_gpu_available()

RTX3090算力:8.6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值