在不修改网络结构的情况下,节省内存的方法:
def inplace_relu(m):
classname = m.__class__.__name__
If classname.find(‘ReLU’) != -1:
m.inplace = True # 原地进行操作,操作完成后覆盖原来的变量
pytorch中有许多原地操作,比如:torch.sigmoid,F.relu等。
Wandb(weights&biases)——轻量化可视化工具,是一个类似于tensorboard的在线模型训练可视化工具,可以帮助跟踪实验,记录运行中的超参数和输出指标,可视化结果并共享结果。
randlanet的电脑环境配置:
Python=3.6(name)+Tensorflow-gpu1.13.1+cuda10.0+cudnn7.4在3090上失败!!!!
Failed to run cuBLAS routine cublasSgemm_v2:CUBLAS_STATUS_EXECUTION_FAILED
原因:RTX30系列不支持cuda10,支持CUDA11.1及以上版本。
Python3.7的环境tf2,激活环境,pip install tensorflow-gpu==2.4.1 -i https://pypi.tuna.tsinghua.edu.cn/simple 2.4.1报错(调用不了gpu)
卸载后,尝试tensorflow-gpu==2.6.0(True),进入后那两句代码不太管用。
报错:Error while using Tensorflow:no attribute’variable_scope’
dataset.init_input_pipeline()这步进行不下去,还有randlanet.py的train里的出问题
前提:显卡3090、CUDA11.1、
尝试220版本
conda create -n 环境名字 python==3.6/3.7
activate 环境名字
pip install tensorflow-gpu==2.2.0 -i 清华镜像源(https://pypi.tuna.tsinghua.edu.cn/simple)
pip list
python
import tensorflow as tf 无错误提示
tf.test.is_gpu_available()
RTX3090算力:8.6