2 contiguous()函数应用:当调用contiguous()时,会强制拷贝一份tensor,让它的布局和从头创建的一模一样,但是两个tensor完全没有联系;
4.1 在model中,我们需要更新其中的参数,训练结束将参数保存下来。但在某些时候,我们可能希望模型中的某些参数参数不更新(从开始到结束均保持不变),但又希望参数保存下来(model.state_dict() ),这是我们就会用到 register_buffer();
4.2 成员变量:不更新,但是不算是模型中的参数(model.state_dict());通过register_buffer()登记过的张量:会自动成为模型中的参数,随着模型移动(gpu/cpu)而移动,但是不会随着梯度进行更新;
4.3 模型保存下来的参数有两种:一种是需要更新的Parameter,另一种是不需要更新的buffer。在模型中,利用backward反向传播,可以通过requires_grad来得到buffer和parameter的梯度信息,但是利用optimizer进行更新的是parameter,buffer不会更新,这也是两者最重要的区别。这两种参数都存在于model.state_dict()的OrderedDict中,也会随着模型“移动”(model.cuda())