机器学习算法之2:决策树

本文详细介绍了决策树模型,包括其在分类问题中的应用,以及决策树的构造原理。通过递归式切割寻找最佳分类标准,决策树生成易于理解和解释的规则。文章还探讨了决策树与条件概率分布的关系,以及采用贪心算法进行学习的过程。
摘要由CSDN通过智能技术生成

树模型简介

树模型是有监督学习类算法中应用广泛的一类模型,同时可应用于分类问题和回归问题,其中,用于解决分类问题的树模型常被称为分类树,而用于解决回归类问题的树模型被称作回归树。
树模型通过递归式切割的方法来寻找最佳分类标准,进而最终形成规则。其算法原理虽然简单,但模型本身适用面极广,且在分类问题和回归问题上均有良好的表现,外加使用简单,无须人为进行过多变量调整和数据预处理,同时生成规则清晰,模型本身的可解释性非常强,因此在各行业均有广泛应用。

分类决策树

决策树(Decision Tree)是一种实现分治策略的层次数据结构。它是一种有效的非参数学习方法,并可以用于分类和回归。本文主要讨论分类决策树。
分类决策树模型是一种基于特征对实例进行分类的树形结构(包括二叉树和多叉树)。
决策树由结点(node)和有向边(directed edge)组成,树中包含三种结点:
根结点(root node):包含样本全集。没有入边,但有零条或多条出边;
内部结点(internal node):对应于属性测试条件,恰有⼀一条入边,和两条或多条出边;
叶结点(leaf node)或终结点(terminal node):对应于决策结果,恰有一条入边,但没有出边。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值