经典不等式链:
1. 第一部分:调和平均数(HA: harmonic average)
即n个量的倒数的平均数的倒数;
应用场景:样本自变量和因变量的乘积相等的情况下,改变每个样本的自变量,而不改变自变量的总和,随之变化的因变量为调和平均数.
实际例子:
例一:一道小学6年级题目。一项工程甲单独完成需要4天,乙单独完成需要6天,问甲乙一起完成需要几天?
此题对于一些六年级孩子而言应该不算难题。他们所熟练使用的做法,也是现在很多人第一时间想到的方法便是设“1”法。即需要:
这是我们第一次无意识得接触调和平均数。当然大部分人也只是按公式去理解:总工程量设为x,则甲乙工作效率分别是,所以两个人得工作效率为
,进而消去x便得到我们上述结果。
对比该例和我们对调和平均数的应用场景,这里总体的工程量是不变的,所求的工作时间为因变量,自变量为工作效率(和不变)。所求时间即为调和平均!
调和平均可以通俗理解为“能者多劳”,或者说是“压榨能人”。即能力强的(干活快的)不怕吃亏,大家都埋头苦干就好了(是不是很符合我们的共产主义目标(*^_^*))。对于每个变量的“能力调和”。
注意:1. 使用简单的调和平均要满足“大家一起”这个条件,如果不满足将变为另一种“调和”,如下面例二。
2.自变量与因变量乘积要保持不