物联网中的对抗样本攻击与去中心化可信联邦学习训练节点筛选
物联网中的对抗样本攻击
近年来,物联网(IoT)技术取得了巨大进展,正逐渐融入社会生活的各个领域,如自动驾驶、医疗保健等。随着物联网设备数量的爆炸式增长,预计到2025年,连接到全球网络的物联网设备数量将增加到超过75.44亿台。物联网覆盖了自动化、健康、交通、能源、制造等多个行业,并催生了自动驾驶和智慧城市等实际应用。
然而,当前的物联网系统面临着诸多安全威胁,其中由深度神经网络(DNN)的脆弱性所带来的安全威胁亟待解决。深度学习在模式识别、人脸识别、语音识别和自动驾驶等多个领域发挥着重要作用,由于其具备处理大量数据的能力,也被广泛应用于物联网领域。但大量研究证实,DNN在处理对抗操作时存在脆弱性,对抗样本能够通过对网络输入数据进行微小更改,迷惑DNN模型,导致错误判断。
背景知识
- 物联网(IoT) :物联网是由各种传感、通信、网络和信息处理设备组成的网络基础设施,主要包括红外传感器、射频识别器、激光扫描仪、GPS等信息设备。如今,物联网广泛应用于智慧城市、自动驾驶、医疗保健等领域。在物联网系统中,各类设备可根据行业制定的协议和标准接入物联网,实现信息的交换和通信。由于系统庞大,每天会产生大量待处理的数据,因此DNN常被用于物联网决策,但这也给攻击者提供了可乘之机。整个物联网大致由感知层(接收数据)、网络层(交换数据)和应用层(处理数据)三部分组成。本文讨论的对抗样本攻击主要通过感知层精心设计的样本输入,使应用层的DNN产生误判。
- 对抗样本 :对抗样本是在原始样本上添加了不可见扰动的样
超级会员免费看
订阅专栏 解锁全文
947

被折叠的 条评论
为什么被折叠?



