多源信息管理与火灾增长建模误差修正研究
在当今的信息时代,我们面临着处理多源、不完美信息的挑战,同时在一些关键领域,如环境监测和灾害预测,准确的模型和数据处理至关重要。本文将探讨多源信息管理中的模糊集和信念函数方法,以及火灾增长建模的误差修正问题。
多源信息管理
苯达松用量的模糊集处理
在农业生产中,化学产品的使用对水质有重要影响。以苯达松(Bentazone)为例,它存在于一些化学产品中,农民在玉米和苜蓿田使用含有苯达松的商业化学品 Basagran。不同地块的使用量不同:
- P1地块 :约使用 1.3kg/ha 的 Basagran(估计量在 1.2 - 1.4 kg/ha 之间,可表示为三角数 (1.2,1.3,1.4))。
- P2地块 :约使用 0.7 kg/ha 的 Basagran(在 0.6 - 0.8 kg/ha 之间)。
- P3地块 :约使用 0.6 kg/ha 的 Basagran(在 0.5 - 0.7 kg/ha 之间)。
由此,苯达松的用量(以 kg/ha 表示)可以用以下三角模糊数表示:
- $\mu Q_{j}A_{1}(q) = (1.0,1.1,1.2)$
- $\mu Q_{j}A_{2}(q) = (0.5,0.6,0.7)$
- $\mu Q_{j}A_{3}(q) = (0.4,0.5,0.6)$
这些模糊数对应于 Basagran 用量的 87%。使用 Zadeh t - norm 可以生成三个中间模糊集 $\mu
超级会员免费看
订阅专栏 解锁全文
462

被折叠的 条评论
为什么被折叠?



