多源信息管理与火灾增长建模误差修正
在当今信息爆炸的时代,我们面临着处理多源、不完美信息以及进行准确预测的挑战。本文将探讨两个重要的主题:一是多源信息管理中模糊集和信念函数的应用,二是火灾增长建模的误差修正方法。
多源信息管理
在农业生产中,化学产品的使用对水质有着重要影响。以苯达松(Bentazone)为例,它存在于一些化学产品中,其使用量的管理与水质密切相关。
在玉米和苜蓿田,农民使用含有 87% 苯达松的 Basagran 化学产品。不同地块的使用量如下:
| 地块 | Basagran 使用量(kg/ha) | 苯达松使用量(kg/ha,三角模糊数) |
| ---- | ---- | ---- |
| P1 | 约 1.3(1.2 - 1.4) | (1.0, 1.1, 1.2) |
| P2 | 约 0.7(0.6 - 0.8) | (0.5, 0.6, 0.7) |
| P3 | 约 0.6(0.5 - 0.7) | (0.4, 0.5, 0.6) |
通过 Zadeh t - norm 可以得到三个中间模糊集,进而计算出模糊量。这些结果需要连同其来源信息一起存储在信息系统中。
接下来,我们进入信念函数的领域。在多源环境中获取不确定信息时,信念函数理论提供了强大的工具。该理论由 Dempster 引入并由 Shafer 形式化,可用于处理不确定和不精确的数据。
证据表示
设 Ω 是一个有限的互斥假设集合,称为识别框架。在土地覆盖识别中,Ω 是关于像素类别的假设集合。所有子集的集合表示为 2Ω。基本信念分配(bba)是一个将识别空间 Ω
超级会员免费看
订阅专栏 解锁全文
461

被折叠的 条评论
为什么被折叠?



