10.8Python数学基础-导数

1.概念

速度角度:
在物理学中,速度是描述物体位置随时间变化快慢的量。假设我们有一个函数 f(t) 表示物体在时间 t 的位置,那么在时间间隔 [t1, t2] 内,物体移动的距离为 f(t2) - f(t1)。平均速度 v 可以表示为:
v = f ( t 2 ) − f ( t 1 ) t 2 − t 1 v = \frac{f(t2) - f(t1)}{t2 - t1} v=t2t1f(t2)f(t1)
物体在 t1 时刻的瞬时速度可以近似为:
v ≈ f ( t 1 + Δ t ) − f ( t 1 ) Δ t v \approx \frac{f(t1 + \Delta t) - f(t1)}{\Delta t} vΔtf(t1+Δt)f(t1)
当 Δt 趋近于 0 时,上述表达式即为瞬时速度的定义。
切线角度:
假设我们有一个函数 f(x),其图像是一条曲线。我们想要了解这条曲线在某一点 x=a 处的变化情况。通过割线斜率的极限来定义切线斜率。
例子
1. 对于函数 f(x) = x^2,计算其在 x=1 处的瞬时变化率(即导数)。
解:
f ′ ( 1 ) = lim ⁡ Δ x → 0 f ( 1 + Δ x ) − f ( 1 ) Δ x = lim ⁡ Δ x → 0 ( 1 + Δ x ) 2 − 1 2 Δ x = lim ⁡ Δ x → 0 1 + 2 Δ x + ( Δ x ) 2 − 1 Δ x = lim ⁡ Δ x → 0 ( 2 + Δ x ) = 2 f'(1) = \lim_{\Delta x \rightarrow 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{(1 + \Delta x)^2 - 1^2}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{1 + 2\Delta x + (\Delta x)^2 - 1}{\Delta x} = \lim_{\Delta x \rightarrow 0} (2 + \Delta x) = 2 f(1)=Δx0limΔxf(1+Δx)f(1)=Δx0limΔx(1+Δx)212=Δx0limΔx1+x+(Δx)21=Δx0lim(2+Δx)=2

2.导数的几何意义

2.1 切线

函数 f(x) 在点 (a, f(a)) 处的切线斜率是:
f ′ ( a ) = lim ⁡ x → a f ( x ) − f ( a ) x − a f'(a) = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a} f(a)=xalimx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值