1.概念
速度角度:
在物理学中,速度是描述物体位置随时间变化快慢的量。假设我们有一个函数 f(t) 表示物体在时间 t 的位置,那么在时间间隔 [t1, t2] 内,物体移动的距离为 f(t2) - f(t1)。平均速度 v 可以表示为:
v
=
f
(
t
2
)
−
f
(
t
1
)
t
2
−
t
1
v = \frac{f(t2) - f(t1)}{t2 - t1}
v=t2−t1f(t2)−f(t1)
物体在 t1 时刻的瞬时速度可以近似为:
v
≈
f
(
t
1
+
Δ
t
)
−
f
(
t
1
)
Δ
t
v \approx \frac{f(t1 + \Delta t) - f(t1)}{\Delta t}
v≈Δtf(t1+Δt)−f(t1)
当 Δt 趋近于 0 时,上述表达式即为瞬时速度的定义。
切线角度:
假设我们有一个函数 f(x),其图像是一条曲线。我们想要了解这条曲线在某一点 x=a 处的变化情况。通过割线斜率的极限来定义切线斜率。
例子:
1. 对于函数 f(x) = x^2,计算其在 x=1 处的瞬时变化率(即导数)。
解:
f
′
(
1
)
=
lim
Δ
x
→
0
f
(
1
+
Δ
x
)
−
f
(
1
)
Δ
x
=
lim
Δ
x
→
0
(
1
+
Δ
x
)
2
−
1
2
Δ
x
=
lim
Δ
x
→
0
1
+
2
Δ
x
+
(
Δ
x
)
2
−
1
Δ
x
=
lim
Δ
x
→
0
(
2
+
Δ
x
)
=
2
f'(1) = \lim_{\Delta x \rightarrow 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{(1 + \Delta x)^2 - 1^2}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{1 + 2\Delta x + (\Delta x)^2 - 1}{\Delta x} = \lim_{\Delta x \rightarrow 0} (2 + \Delta x) = 2
f′(1)=Δx→0limΔxf(1+Δx)−f(1)=Δx→0limΔx(1+Δx)2−12=Δx→0limΔx1+2Δx+(Δx)2−1=Δx→0lim(2+Δx)=2
2.导数的几何意义
2.1 切线
函数 f(x) 在点 (a, f(a)) 处的切线斜率是:
f
′
(
a
)
=
lim
x
→
a
f
(
x
)
−
f
(
a
)
x
−
a
f'(a) = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a}
f′(a)=x→alimx−af(x)−f(a)
切线方程可以表示为:
y
−
f
(
a
)
=
f
′
(
a
)
(
x
−
a
)
y - f(a) = f'(a)(x - a)
y−f(a)=f′(a)(x−a)
例子:
1. 求函数 f(x) = 2x + 3 在 x=2 处的切线方程。
解:
f
′
(
x
)
=
2
f'(x) = 2
f′(x)=2
所以在 x=2 处的切线方程为:
y
−
(
2
⋅
2
+
3
)
=
2
(
x
−
2
)
=
>
y
=
2
x
−
1
y - (2 \cdot 2 + 3) = 2(x - 2) => y = 2x - 1
y−(2⋅2+3)=2(x−2)=>y=2x−1
3.可导与连续的关系
3.1 定理
连续性不一定蕴含可导性
反例:考虑函数 f(x) = |x| 在 x=0 处是否可导。
证明:
连续性:由于 |x| 在 x=0 处的左右极限相等,因此 f(x) = |x| 在 x=0 处连续。
可导性:
左导数:
f
−
′
(
0
)
=
lim
h
→
0
−
f
(
0
+
h
)
−
f
(
0
)
h
=
lim
h
→
0
−
−
h
−
0
h
=
−
1
f_{-}'(0) = \lim_{h \rightarrow 0^{-}} \frac{f(0 + h) - f(0)}{h} = \lim_{h \rightarrow 0^{-}} \frac{-h - 0}{h} = -1
f−′(0)=h→0−limhf(0+h)−f(0)=h→0−limh−h−0=−1
右导数:
f
+
′
(
0
)
=
lim
h
→
0
+
f
(
0
+
h
)
−
f
(
0
)
h
=
lim
h
→
0
+
h
−
0
h
=
1
f_{+}'(0) = \lim_{h \rightarrow 0^{+}} \frac{f(0 + h) - f(0)}{h} = \lim_{h \rightarrow 0^{+}} \frac{h - 0}{h} = 1
f+′(0)=h→0+limhf(0+h)−f(0)=h→0+limhh−0=1
由于左导数和右导数不相等,因此 f(x) = |x| 在 x=0 处不可导。
4.求导公式
4.1 常见函数的求导公式
幂函数规则:
d
d
x
(
x
n
)
=
n
x
n
−
1
\frac{d}{dx}(x^n) = nx^{n-1}
dxd(xn)=nxn−1
例子:
1. 求 f(x) = 5x^3 - 2x^2 + 4x - 7 的导数。
解:
f
′
(
x
)
=
5
⋅
3
x
2
−
2
⋅
2
x
+
4
⋅
1
−
0
=
15
x
2
−
4
x
+
4
f'(x) = 5 \cdot 3x^2 - 2 \cdot 2x + 4 \cdot 1 - 0 = 15x^2 - 4x + 4
f′(x)=5⋅3x2−2⋅2x+4⋅1−0=15x2−4x+4
5.高阶导数
例子:
1. 求函数 f(x) = x^4 的三阶导数。
解:
一阶导数:
f ′ ( x ) = 4 x 3 f'(x) = 4x^3 f′(x)=4x3
二阶导数:
f ′ ′ ( x ) = d d x 4 x 3 = 12 x 2 f''(x) = \frac{d}{dx} 4x^3 = 12x^2 f′′(x)=dxd4x3=12x2
三阶导数:
f
′
′
′
(
x
)
=
d
d
x
12
x
2
=
24
x
f'''(x) = \frac{d}{dx} 12x^2 = 24x
f′′′(x)=dxd12x2=24x
所以,对于 f(x) = x^4,其三阶导数是 f’‘’(x) = 24x。对于不同的 f(x),求解过程类似,但具体的结果会有所不同。
注意到正弦函数的导数具有周期性,每四次求导后结果重复。
6.隐函数求导方法
隐函数求导是处理形式为 F(x, y) = 0 的方程的方法,其中 y 不是直接表示为 x 的函数。
隐函数求导步骤
- 求导:对等式两边关于 x 求导。
- 应用链式法则:在求导过程中,遇到 y 的导数时,应用链式法则。
- 解出导数:通过得到的方程解出 d y d x \frac{dy}{dx} dxdy。
示例
例子 1:求 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 的 d y d x \frac{dy}{dx} dxdy
- 求导:
2 x + 2 y d y d x = 0 2x + 2y \frac{dy}{dx} = 0 2x+2ydxdy=0 - 解出
d
y
d
x
\frac{dy}{dx}
dxdy:
d y d x = − x y \frac{dy}{dx} = -\frac{x}{y} dxdy=−yx
例子 2:求 x 3 + y 3 = 6 x y x^3 + y^3 = 6xy x3+y3=6xy 的 d y d x \frac{dy}{dx} dxdy
- 求导:
3 x 2 + 3 y 2 d y d x = 6 y + 6 x d y d x 3x^2 + 3y^2 \frac{dy}{dx} = 6y + 6x \frac{dy}{dx} 3x2+3y2dxdy=6y+6xdxdy - 解出
d
y
d
x
\frac{dy}{dx}
dxdy:
d y d x = 3 x 2 − 6 y 6 x − 3 y 2 \frac{dy}{dx} = \frac{3x^2 - 6y}{6x - 3y^2} dxdy=6x−3y23x2−6y
7.参数方程求导技巧
参数方程求导涉及使用参数 t 来表示 x 和 y 的关系。
参数方程求导步骤
- 求 d x d t \frac{dx}{dt} dtdx 和 d y d t \frac{dy}{dt} dtdy:分别对参数方程中的 x 和 y 关于参数 t 求导。
- 求 d y d x \frac{dy}{dx} dxdy:通过 d y d t d x d t \frac{\frac{dy}{dt}}{\frac{dx}{dt}} dtdxdtdy 计算得到。
示例
例子:求 { x = cos t y = sin t \begin{cases}x = \cos t\\ y = \sin t\end{cases} {x=costy=sint 的 d y d x \frac{dy}{dx} dxdy
- 求
d
x
d
t
\frac{dx}{dt}
dtdx 和
d
y
d
t
\frac{dy}{dt}
dtdy:
d x d t = − sin t , d y d t = cos t \frac{dx}{dt} = -\sin t, \quad \frac{dy}{dt} = \cos t dtdx=−sint,dtdy=cost - 求
d
y
d
x
\frac{dy}{dx}
dxdy:
d y d x = cos t − sin t = − cot t \frac{dy}{dx} = \frac{\cos t}{-\sin t} = -\cot t dxdy=−sintcost=−cott
以上内容涵盖了高阶导数的概念、隐函数求导方法以及参数方程求导技巧,并通过具体例子进行了详细解释。