10.8Python数学基础-微分

微分

1.定义

微分是函数在某个变化过程中的改变量的线性主要部分。

若函数y=f(x)在点x处有导数f’(x)存在,则y因x的变化量△x所引起的改变量
△ y = f ( x + △ x ) − f ( x ) △y=f(x+△x)-f(x) y=f(x+x)f(x)
可以表示为
△ y = f ′ ( x ) ⋅ △ x + o ( △ x ) △y=f'(x)·△x+o(△x) y=f(x)x+o(x)
,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,

微分dy可以近似地表示为
d y = f ′ ( x ) △ x dy=f'(x)△x dy=f(x)x
,它描述了函数值y随自变量x变化而变化的线性部分。‌

例如:正方形的面积公式为:
y = x 2 y=x^{2} y=x2
假设正方形的初始边长x=a,然后在a的基础上边长增加一个非常小的改变量△x,此时正方形的边长x=a+△x,正方形增加的面积:
△ y = f ( a + △ x ) − f ( a ) = ( a + △ x ) 2 − a 2 = 2 a . △ x + △ x 2 △y=f(a+△x)-f(a)=(a+△x)^{2}-a^{2}=2a.△x+△x^{2} y=f(a+x)f(a)=(a+x)2a2=2a.△x+x2
由于△x非常小,所以△x^2可以看作是△x的高阶无穷小,即O(△x),所以:
△ y = 2 a △ x + O ( △ x ) △y=2a△x+O(△x) y=2ax+O(x)
等式两边同除以△x:
△ y △ x = 2 a + O ( △ x ) △ x \dfrac{△y}{△x}=2a+\dfrac{O(△x)}{△x} xy=2a+xO(x)
求极限:
lim ⁡ ⁡△ x → 0 △ y △ x = lim ⁡ ⁡△ x → 0 ( 2 a + O ( △ x ) △ x ) = 2 a \lim _{⁡△x\rightarrow 0}\dfrac{△y}{△x}=\lim _{⁡△x\rightarrow 0}(2a+\dfrac{O(△x)}{△x})=2a ⁡△x0limxy=⁡△x0lim(2a+xO(x))=2a
极限存在,所以函数可导,即:
f ′ ( a ) = 2 a f'(a)=2a f(a)=2a
完整等式可表示为:
△ y = f ′ ( a ) △ x + O ( △ x ) △y=f'(a)△x+O(△x) y=f(a)x+O(x)
因此,微分dy可以近似地表示为
d y = f ′ ( a ) △ x 或 d y = f ′ ( a ) d x dy=f'(a)△x或dy=f'(a)dx dy=f(a)xdy=f(a)dx
注意:△y是精确值,dy是近似值。

2.可微的充要条件

函数 f(x) 在点 x=a 处可微的充要条件是:

  1. 函数在点 x=a处连续:
    lim ⁡ ⁡ x → a f ( x ) = f ( a ) \lim _{⁡x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)

  2. 函数在点 x=a 处左右导数存在且相等:
    f − ′ ( a ) = f + ′ ( a ) f'_{-}(a)=f'_{+}(a) f(a)=f+(a)

简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。

3.微分公式与法则

根据微分定义
d y = f ′ ( x ) d x dy=f'(x)dx dy=f(x)dx
可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。

例子

1.假设方程为
y = e 1 − 3 x c o s x y=e^{1-3x}cosx y=e13xcosx
求dy。

解:

先求导数:
y ′ = ( e 1 − 3 x ) ′ c o s x + e 1 − 3 x ( c o s x ) ′ = e 1 − 3 x ( 1 − 3 x ) ′ − e 1 − 3 x s i n x = − 3 e 1 − 3 x − e 1 − 3 x s i n x = − e 1 − 3 x ( 3 + s i n x ) y'=(e^{1-3x})'cosx + e^{1-3x}(cosx)'=e^{1-3x}(1-3x)'-e^{1-3x}sinx=-3e^{1-3x}-e^{1-3x}sinx=-e^{1-3x}(3+sinx) y=(e13x)cosx+e13x(cosx)=e13x(13x)e13xsinx=3e13xe13xsinx=e13x(3+sinx)
则:
d y = y ′ d x = − e 1 − 3 x ( 3 + s i n x ) d x dy=y'dx=-e^{1-3x}(3+sinx)dx dy=ydx=e13x(3+sinx)dx

4.微分的几何意义

假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:
△ y = f ( x 0 + △ x ) − f ( x 0 ) △y=f(x_{0}+△x)-f(x_{0}) y=f(x0+x)f(x0)
△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:
d y = f ′ ( x 0 ) △ x dy=f'(x_{0})△x dy=f(x0)x
f’(x)是切线的斜率,dy是△y的近似值,如上图所示,所以

△ y ≈ f ′ ( x 0 ) △ x f ( x 0 + △ x ) = △ y + f ( x 0 ) ≈ f ′ ( x 0 ) △ x + f ( x 0 ) △y\approx f'(x_{0})△x\\ f(x_{0}+△x)=△y+f(x_{0})\approx f'(x_{0})△x+f(x_{0}) yf(x0)xf(x0+x)=y+f(x0)f(x0)x+f(x0)
所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。

例子

1.有一个半径为1cm的球,要在该球上镀0.01cm厚的铜,求镀铜的体积。

解:

1.体积公式:
V = 4 3 π r 3 V=\dfrac{4}{3}\pi r^{3} V=34πr3
2.根据题干可知,r0=1,△r=0.01,求出导数:
V ′ = f ′ ( r ) = 4 π r 2 V'=f'(r)=4\pi r^{2} V=f(r)=4πr2
由微分公式:
△ y ≈ f ′ ( x 0 ) △ x = 4 π 1 2 ( 0.01 ) = 0.04 π △y\approx f'(x_{0})△x=4\pi 1^{2}(0.01)=0.04\pi yf(x0)x=4π12(0.01)=0.04π
2.求
sin ⁡ ( 3 0 o 3 0 ′ ) \sin ( 30^{o}30') sin(30o30)
解:
3 0 o 3 0 ′ = π 6 + π 360 30^{o}30'=\dfrac{\pi}{6} + \dfrac{\pi}{360} 30o30=6π+360π
根据分析可知:
x 0 = π 6 , △ x = π 360 x_{0}=\dfrac{\pi}{6},△x=\dfrac{\pi}{360} x0=6π,x=360π
根据微分公式:
f ( x 0 + △ x ) ≈ f ′ ( x 0 ) △ x + f ( x 0 ) = c o s x 0 △ x + s i n x 0 = ( c o s π 6 ) π 360 + s i n π 6 = 3 2 . π 360 + 1 2 = 1 2 + 3 π 720 f(x_{0}+△x)\approx f'(x_{0})△x+f(x_{0})=cosx_{0}△x+sinx_{0}=(cos\dfrac{\pi}{6})\dfrac{\pi}{360}+sin\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}.\dfrac{\pi}{360}+\dfrac{1}{2}=\dfrac{1}{2}+\dfrac{\sqrt{3}\pi}{720} f(x0+x)f(x0)x+f(x0)=cosx0x+sinx0=(cos6π)360π+sin6π=23 .360π+21=21+7203 π
常用的近似公式

当x->0,
( 1 + x ) α ≈ 1 + α x s i n x ≈ x t a n x ≈ x e x ≈ 1 + x l n ( 1 + x ) ≈ x (1+x)^{\alpha }\approx 1+\alpha x\\ sinx \approx x\\ tanx \approx x\\ e^{x} \approx 1+x\\ ln(1+x) \approx x (1+x)α1+αxsinxxtanxxex1+xln(1+x)x

5.微分中值定理

5.1 罗尔定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b]上连续。
  2. 在开区间 (a,b)上可导。
  3. 在区间端点的函数值相等,即 f(a)=f(b)。

那么,在开区间 (a,b)内至少存在一点 c,使得:f′©=0

罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。

5.2 拉格朗日中值定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b] 上连续。
  2. 在开区间 (a,b)上可导。

那么,在开区间 (a,b) 内至少存在一点 c,使得:
f ′ ( c ) = f ( b ) − f ( a ) b − a f′(c)=\dfrac{f(b)−f(a)}{b−a} f(c)=baf(b)f(a)
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。

罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。

5.3 柯西中值定理

如果函数 f(x) 和 g(x) 满足以下条件:

  1. 在闭区间 [a,b]上连续。
  2. 在开区间 (a,b)上可导。
  3. 在开区间 (a,b) 内,g′(x)≠0。

那么,在开区间 (a,b) 内至少存在一点 c,使得:
f ′ ( c ) g ′ ( c ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \dfrac{f′(c)}{g′(c)}=\dfrac{f(b)−f(a)}{g(b)−g(a)} g(c)f(c)=g(b)g(a)f(b)f(a)
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。

怎么理解柯西中值定理?

将f(x)和g(x)看作是参数方程:
{ x = f ( t ) y = g ( t ) \begin{cases}x=f(t)\\ y=g(t)\end{cases} {x=f(t)y=g(t)

d y d x = d y d t d x d t = g ′ ( t ) f ′ ( t ) \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g'(t)}{f'(t)} dxdy=dtdxdtdy=f(t)g(t)

a、b端点连线的斜率为:
g ( b ) − g ( a ) f ( b ) − f ( a ) \dfrac{g(b)-g(a)}{f(b)-f(a)} f(b)f(a)g(b)g(a)
根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:
g ′ ( t ) f ′ ( t ) = g ( b ) − g ( a ) f ( b ) − f ( a ) \dfrac{g'(t)}{f'(t)}=\dfrac{g(b)-g(a)}{f(b)-f(a)} f(t)g(t)=f(b)f(a)g(b)g(a)

5.4 洛必达法则

洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。

设函数 f(x)和 g(x 满足以下条件:

  1. 在点 a 的某个去心邻域内可导,且 g′(x)≠0。

  2. lim ⁡ x → a f ( x ) = 0 且 lim ⁡ ⁡ x → a g ( x ) = 0 ,或者 lim ⁡ x → a f ( x ) = ± ∞ 且 lim ⁡ x → a g ( x ) = ± ∞ 。 \lim _{x\rightarrow a}f(x)=0 且 \lim _{⁡x\rightarrow a}g(x)=0,或者 \lim _{x\rightarrow a}f(x)=±∞ 且 \lim _{x\rightarrow a}g(x)=±∞。 xalimf(x)=0xalimg(x)=0,或者xalimf(x)=±xalimg(x)=±

如果
lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)} xalimg(x)f(x)
存在(或为无穷大),那么:
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim _{x\rightarrow a}\dfrac{f(x)}{g(x)}=\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)} xalimg(x)f(x)=xalimg(x)f(x)
例子

1.求极限
lim ⁡ x → 0 s i n ⁡ x x \lim _{x\rightarrow 0}\dfrac{sin⁡x}{x} x0limxsinx
解:

  1. 验证不定型:
    lim ⁡ x → 0 s i n ⁡ x = 0 , lim ⁡ x → 0 x = 0 \lim _{x\rightarrow 0}sin⁡x=0,\lim _{x\rightarrow 0}x=0 x0limsinx=0,x0limx=0
    这是一个 0/0 型不定型。

  2. 应用洛必达法则:
    lim ⁡ x → 0 s i n ⁡ x x = lim ⁡ x → 0 d d x ( s i n ⁡ x ) d d x ( x ) = lim ⁡ x → 0 c o s ⁡ x 1 = c o s ⁡ 0 = 1 \lim _{x\rightarrow 0}\dfrac{sin⁡x}{x}=\lim _{x\rightarrow 0}\dfrac{\dfrac{d}{dx}(sin⁡x)}{\dfrac{d}{dx}(x)}=\lim _{x\rightarrow 0}\dfrac{cos⁡x}{1}=cos⁡0=1 x0limxsinx=x0limdxd(x)dxd(sinx)=x0lim1cosx=cos⁡0=1

2.求极限
lim ⁡ x → ∞ l n ⁡ x x \lim _{x\rightarrow \infty}\dfrac{ln⁡x}{x} xlimxlnx
解:
lim ⁡ x → ∞ l n x = ∞ , lim ⁡ x → ∞ x = ∞ \lim _{x\rightarrow \infty}lnx=\infty,\lim _{x\rightarrow \infty}x=\infty xlimlnx=,xlimx=
这是一个 ∞/∞ 型不定型。

应用洛必达法则:
lim ⁡ x → ∞ l n ⁡ x x = lim ⁡ x → ∞ d d x ( l n ⁡ x ) d d x ( x ) = lim ⁡ x → ∞ 1 x = 0 \lim _{x\rightarrow \infty}\dfrac{ln⁡x}{x}=\lim _{x\rightarrow \infty}\dfrac{\dfrac{d}{dx}(ln⁡x)}{\dfrac{d}{dx}(x)}=\lim _{x\rightarrow \infty}\dfrac{1}{x}=0 xlimxlnx=xlimdxd(x)dxd(lnx)=xlimx1=0

6.函数的单调性

函数的单调性可以通过其导数来判定:

  1. 递增函数
    如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。
  2. 递减函数
    如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。

例子

函数
f ( x ) = x 3 − 3 x f(x)=x^{3}−3x f(x)=x33x
在区间 (−2,2)上的单调性

解:

求导:
f ′ ( x ) = 3 x 2 − 3 f'(x)=3x^{2}-3 f(x)=3x23
计算斜率为0的驻点:
3 x 2 − 3 = 0 = > x = 1 或 x = − 1 3x^{2}-3=0=>x=1或x=-1 3x23=0=>x=1x=1
在区间(-2,-1)
f ′ ( x ) = 3 x 2 − 3 > 0 f'(x)=3x^{2}-3>0 f(x)=3x23>0
在该区间是递增的

在区间(-1,1)
f ′ ( x ) = 3 x 2 − 3 < 0 f'(x)=3x^{2}-3<0 f(x)=3x23<0
在该区间是递减的

在区间(1,2)
f ′ ( x ) = 3 x 2 − 3 > 0 f'(x)=3x^{2}-3>0 f(x)=3x23>0
在该区间是递增的

7.函数的凹凸性

7.1 函数凹凸性判定

函数的凹凸性可以通过其二阶导数来判定:

  1. 凹函数
    如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。
  2. 凸函数
    如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 xx,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。

7.2 拐点

拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。

例子

求函数
f ( x ) = x 3 − 3 x f(x)=x^{3}−3x f(x)=x33x
在区间 (−2,2)上的凹凸性

解:

求二阶导数:
f ′ ′ ( x ) = 6 x f''(x)=6x f′′(x)=6x
求二阶导数驻点:
6 x = 0 = > x = 0 6x=0=>x=0 6x=0=>x=0
在区间(-2,0)
f ′ ′ ( x ) = 6 x < 0 f''(x)=6x<0 f′′(x)=6x<0
在该区间f(x)是凸的

在区间(0,2)
f ′ ′ ( x ) = 6 x > 0 f''(x)=6x>0 f′′(x)=6x>0
在该区间f(x)是凹的

由于 f′′(x)在 x=0 的两侧符号相反,所以 x=0是函数的拐点。

8.极值

极值

是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。

如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≤f©,则称 f©是函数 f(x) 在点 c 处的局部极大值。

如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≥f©,则称 f© 是函数 f(x) 在点 c 处的局部极小值。

最值

最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。

如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≤f©,则称 f©是函数 f(x)的全局最大值。

如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≥f©,则称 f©是函数 f(x)的全局最小值。

8.1 极值的充分必要条件

必要条件

如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′©=0。换句话说,极值点必须是函数的驻点。

充分条件

一阶导数判定法

  1. 局部极大值:
    如果 f′©=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。
  2. 局部极小值:
    如果 f′©=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。

二阶导数判定法

  1. 局部极大值:
    如果 f′©=0,并且 f′′©<0,则 x=c 是局部极大值。
  2. 局部极小值:
    如果 f′©=0,并且 f′′©>0,则 x=c 是局部极小值。

例子

求函数
f ( x ) = x 3 − 3 x f(x)=x^{3}−3x f(x)=x33x
在区间 [−2,2]上的极值

解:

方式一:

1.求一阶导数:
f ′ ( x ) = 3 x 2 − 3 f'(x)=3x^{2}-3 f(x)=3x23
2.求驻点:
3 x 2 − 3 = 0 = > x = 1 或 x = − 1 3x^{2}-3=0=>x=1或x=-1 3x23=0=>x=1x=1
x=1或x=-1都在区间[-2,2]内。

3.判断左右导数的符号:

在x=1处:
f − ′ ( 1 ) < 0 , f + ′ ( 1 ) > 0 f'_{-}(1)<0,f'_{+}(1)>0 f(1)<0,f+(1)>0
所以x=1是局部极小值点,极小值为
f ( 1 ) = 1 3 − 3 = − 2 f(1)=1^{3}-3=-2 f(1)=133=2
在x=-1处:
f − ′ ( 1 ) > 0 , f + ′ ( 1 ) < 0 f'_{-}(1)>0,f'_{+}(1)<0 f(1)>0,f+(1)<0
所以x=-1是局部极大值点,极大值为
f ( − 1 ) = ( − 1 ) 3 + 3 = 2 f(-1)=(-1)^{3}+3=2 f(1)=(1)3+3=2
方式二:

1.求一阶导数:
f ′ ( x ) = 3 x 2 − 3 f'(x)=3x^{2}-3 f(x)=3x23
2.求驻点:
3 x 2 − 3 = 0 = > x = 1 或 x = − 1 3x^{2}-3=0=>x=1或x=-1 3x23=0=>x=1x=1
3.根据二阶导数判定:

在x=1处:
f ′ ′ ( 1 ) = 6 > 0 f''(1)=6>0 f′′(1)=6>0
表示函数在x=1邻域是凹的,所以x=1是局部极小值点,极小值为
f ( 1 ) = 1 3 − 3 = − 2 f(1)=1^{3}-3=-2 f(1)=133=2
在x=-1处:
f ′ ′ ( − 1 ) = − 6 < 0 f''(-1)=-6<0 f′′(1)=6<0
表示函数在x=1邻域是凸的,所以x=1是局部极大值点,极大值为
f ( − 1 ) = ( − 1 ) 3 + 3 = 2 f(-1)=(-1)^{3}+3=2 f(1)=(1)3+3=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值