10.8Python数学基础-不定积分

不定积分

1.定义

如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
∫ f ( x )   d x \int f(x) dx f(x)dx
表示 f(x) 的所有原函数,通常写成:

∫ f ( x )   d x = F ( x ) + C \int f(x) dx=F(x)+C f(x)dx=F(x)+C
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。

不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。

2.基本积分公式

  1. 常数积分
    ∫ k   d x = k x + C ( 其中 k 是常数 ) ∫k dx=kx+C(其中 k 是常数) kdx=kx+C(其中k是常数)

  2. 幂函数积分
    ∫ x n   d x = x n + 1 n + 1 + C ( 其中 n ≠ − 1 ) ∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1) xndx=n+1xn+1+C(其中n=1)

  3. 指数函数积分
    ∫ e x   d x = e x + C ∫e^{x} dx=e^{x}+C exdx=ex+C

    ∫ a x   d x = a x l n ⁡ a + C ( 其中 a > 0 且 a ≠ 1 ) ∫a^{x} dx=\dfrac{a^{x}}{ln⁡a}+C(其中 a>0 且 a≠1) axdx=lnaax+C(其中a>0a=1)

  4. 对数函数积分
    ∫ 1 x   d x = l n ⁡ ∣ x ∣ + C ∫\dfrac{1}{x} dx=ln⁡∣x∣+C x1dx=lnx+C

  5. 三角函数积分
    ∫ s i n ⁡ x   d x = − c o s ⁡ x + C ∫sin⁡x dx=−cos⁡x+C sinxdx=cosx+C

    ∫ c o s ⁡ x   d x = s i n ⁡ x + C ∫cos⁡x dx=sin⁡x+C cosxdx=sinx+C

  6. 反三角函数积分
    ∫ 1 1 − x 2   d x = a r c s i n ⁡ x + C ∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsin⁡x+C 1x2 1dx=arcsinx+C

    ∫ 1 1 + x 2   d x = a r c t a n ⁡ x + C ∫\dfrac{1}{1+x^{2}} dx=arctan⁡x+C 1+x21dx=arctanx+C

示例

  1. 求解不定积分:
    ∫ x 2   d x ∫x^{2} dx x2dx
    使用幂函数积分公式:
    ∫ x 2   d x = x 2 + 1 2 + 1 + C = x 3 3 + C ∫x^{2} dx=\dfrac{x^{2+1}}{2+1}+C=\dfrac{x^{3}}{3}+C x2dx=2+1x2+1+C=3x3+C

  2. 求解不定积分
    ∫ e x   d x ∫e^{x} dx exdx
    使用指数函数积分公式:
    ∫ e x   d x = e x + C ∫e^{x} dx=e^{x}+C exdx=ex+C

  3. 求解不定积分
    ∫ 1 x   d x ∫\dfrac{1}{x} dx x1dx
    使用对数函数积分公式:
    ∫ 1 x   d x = l n ⁡ ∣ x ∣ + C ∫\dfrac{1}{x} dx=ln⁡∣x∣+C x1dx=lnx+C

3.换元积分法

3.1 第一类换元积分法

  1. 选择合适的变量替换:
    选择一个合适的变量替换 u=g(x),使得积分变得更简单。

  2. 求导数:
    求 u 对 x 的导数
    d u d x = g ′ ( x ) \dfrac{du}{dx}=g′(x) dxdu=g(x)
    ,并将其改写为
    d u = g ′ ( x )   d x du=g′(x) dx du=g(x)dx

  3. 替换积分变量:
    将原积分中的 x 替换为 u,并将 dx 替换为
    d u g ′ ( x ) \dfrac{du}{g′(x)} g(x)du

  4. 求解新积分:
    求解新的积分
    ∫ f ( u )   d u ∫f(u) du f(u)du

  5. 回代变量:
    将 u 回代为 g(x),得到最终的不定积分结果。

简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。

例子

1.求
∫ 2 c o s 2 x d x \int 2cos2xdx 2cos2xdx
解:

对2求原函数为:2x

将2x放到d里面:
∫ c o s 2 x d 2 x = s i n ( 2 x ) + C \int cos2xd2x=sin(2x)+C cos2xd2x=sin(2x)+C
2.求解不定积分
∫ 2 x c o s ⁡ ( x 2 )   d x ∫2xcos⁡(x^{2}) dx 2xcos(x2)dx
解:

将2x求原函数为
x 2 x^{2} x2
将之放到d里面:
∫ 2 x c o s ⁡ ( x 2 )   d x = ∫ c o s ⁡ ( x 2 )   d x 2 = s i n ( x 2 ) + C ∫2xcos⁡(x^{2}) dx=∫cos⁡(x^{2}) dx^{2}=sin(x^{2})+C 2xcos(x2)dx=cos(x2)dx2=sin(x2)+C
3.求解不定积分
∫ x 1 + x 2   d x ∫\dfrac{x}{\sqrt{1+x^{2}}} dx 1+x2 xdx
解:

将x求原函数:
x − > 1 2 ( x 2 + 1 ) x->\dfrac{1}{2}(x^{2}+1) x>21(x2+1)
将原函数放到d里面,常数留着:
∫ x 1 + x 2   d x = ∫ 1 2 1 1 + x 2   d ( 1 + x 2 ) = ∫ 1 2 ( 1 + x 2 ) − 1 2 d ( 1 + x 2 ) = 1 2 ( 1 + x 2 ) 1 2 1 2 = 1 + x 2 + C ∫\dfrac{x}{\sqrt{1+x^{2}}} dx=∫\dfrac{1}{2}\dfrac{1}{\sqrt{1+x^{2}}} d(1+x^{2})=∫\dfrac{1}{2}(1+x^{2})^{-\dfrac{1}{2}}d(1+x^{2})=\dfrac{1}{2}\dfrac{(1+x^{2})^{\dfrac{1}{2}}}{\dfrac{1}{2}}=\sqrt{1+x^{2}}+C 1+x2 xdx=211+x2 1d(1+x2)=21(1+x2)21d(1+x2)=2121(1+x2)21=1+x2 +C

3.2 第二类换元积分法

第二类换元积分法通常涉及三角函数替换或带根号形式的替换。

  1. 选择合适的变量替换:
    选择一个合适的变量替换 x=g(t),使得积分变得更简单。

  2. 求导数:
    求 x 对 t 的导数
    d x d t = g ′ ( t ) \dfrac{dx}{dt}=g′(t) dtdx=g(t)
    ,并将其改写为
    d x = g ′ ( t )   d t dx=g′(t) dt dx=g(t)dt

  3. 替换积分变量:
    将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。

  4. 求解新积分:
    求解新的积分
    ∫ f ( g ( t ) ) g ′ ( t )   d t ∫f(g(t))g′(t) dt f(g(t))g(t)dt

  5. 回代变量:
    将 t 回代为
    g − 1 ( x ) g^{−1}(x) g1(x)
    ,得到最终的不定积分结果。

简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。

例子

求解不定积分
∫ 1 1 − x 2   d x ∫\dfrac{1}{\sqrt{1−x^{2}}} dx 1x2 1dx
解:

将变量替换:
x = s i n t , ( − π 2 < t < π 2 ) x=sint,(-\dfrac{\pi}{2}< t < \dfrac{\pi}{2}) x=sint,(2π<t<2π)
求出dt
d x = c o s t d t dx=costdt dx=costdt
带入不定积分:
∫ 1 1 − x 2   d x = ∫ 1 1 − ( s i n t ) 2 c o s t d t = ∫ c o s t ∣ c o s t ∣ d t ∫\dfrac{1}{\sqrt{1−x^{2}}} dx=∫\dfrac{1}{\sqrt{1−(sint)^{2}}}costdt=∫\dfrac{cost}{|cost|}dt 1x2 1dx=1(sint)2 1costdt=costcostdt
因为
( − π 2 < t < π 2 ) (-\dfrac{\pi}{2}< t < \dfrac{\pi}{2}) (2π<t<2π)
所以cost>=0,所以
∫ c o s t ∣ c o s t ∣ d t = ∫ d t = t + C ∫\dfrac{cost}{|cost|}dt=∫dt=t+C costcostdt=dt=t+C
将t换回x:

x的反函数:
t = a r c s i n x t=arcsinx t=arcsinx
所以
∫ 1 1 − x 2   d x = a r c s i n x + C ∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsinx+C 1x2 1dx=arcsinx+C
2.求
∫ a 2 − x 2 d x \int \sqrt{a^{2}-x^{2}}dx a2x2 dx
解:

变量替换:
x = a s i n t , ( − π 2 ≤ t ≤ π 2 ) x=asint,(-\dfrac{\pi}{2}\leq t \leq \dfrac{\pi}{2}) x=asint(2πt2π)
这里是为了使x带入不定积分时便于计算。

对x求导:
d x = a c o s t d t dx=acostdt dx=acostdt
带入不定积分:
∫ a 2 − x 2 d x = ∫ a 2 − ( a s i n t ) 2 . a c o s t d t = ∫ a 2 c o s 2 t d t = a 2 ∫ ( 1 + c o s ( 2 t ) 2 ) d t = a 2 2 t + a 2 ∫ c o s ( 2 t ) 4 d ( 2 t ) = a 2 2 t + a 2 s i n ( 2 t ) 4 + C = a 2 2 t + a 2 2 s i n t c o s t + C \int \sqrt{a^{2}-x^{2}}dx=\int \sqrt{a^{2}-(asint)^{2}}.acostdt=\int a^{2}cos^{2}tdt\\ =a^2\int (\dfrac{1+cos(2t)}{2})dt=\dfrac{a^{2}}{2}t+a^2\int \dfrac{cos(2t)}{4}d(2t)=\dfrac{a^{2}}{2}t+a^2\dfrac{sin(2t)}{4}+C=\dfrac{a^{2}}{2}t+\dfrac{a^{2}}{2}sintcost+C a2x2 dx=a2(asint)2 .acostdt=a2cos2tdt=a2(21+cos(2t))dt=2a2t+a24cos(2t)d(2t)=2a2t+a24sin(2t)+C=2a2t+2a2sintcost+C
求反函数:
t = a r c s i n ( x a ) t=arcsin(\dfrac{x}{a}) t=arcsin(ax)
所以
∫ a 2 − x 2 d x = a 2 2 t + a 2 2 s i n t c o s t + C = a 2 2 a r c s i n ( x a ) + x 2 a 2 − x 2 + C \int \sqrt{a^{2}-x^{2}}dx=\dfrac{a^{2}}{2}t+\dfrac{a^{2}}{2}sintcost+C=\dfrac{a^{2}}{2}arcsin(\dfrac{x}{a})+\dfrac{x}{2}\sqrt{a^{2}-x^{2}}+C a2x2 dx=2a2t+2a2sintcost+C=2a2arcsin(ax)+2xa2x2 +C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值