多元函数
1.二元极限
定义
设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当
0
<
(
x
−
a
)
2
+
(
y
−
b
)
2
<
δ
0<\sqrt{(x−a)^2+(y−b)^2}<δ
0<(x−a)2+(y−b)2<δ
时,总有:
∣f(x,y)−L∣<ϵ
则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:
lim
(
x
,
y
)
→
(
a
,
b
)
f
(
x
,
y
)
=
L
\lim _{(x,y)\rightarrow (a,b)}f(x,y)=L
lim(x,y)→(a,b)f(x,y)=L
几何意义
当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。
如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。
例子
f
(
x
,
y
)
=
x
2
y
x
2
+
y
2
f(x,y)=\dfrac{x^{2}y}{x^{2}+y^{2}}
f(x,y)=x2+y2x2y
在点 (0,0)处的极限
解:
-
沿 x轴趋近:
当 y=0 时,
f ( x , 0 ) = x 2 ⋅ 0 x 2 + 0 2 = 0 f(x,0)=\dfrac{x^{2}⋅0}{x^{2}+0^{2}}=0 f(x,0)=x2+02x2⋅0=0
。因此:
lim x → 0 f ( x , 0 ) = 0 \lim _{x→0}f(x,0)=0 x→0limf(x,0)=0 -
沿 y轴趋近:
当 x=0时,
f ( 0 , y ) = 0 2 ⋅ y 0 2 + y 2 = 0 f(0,y)=\dfrac{0^{2}⋅y}{0^{2}+y^{2}}=0 f(0,y)=02+y202⋅y=0
。因此:
lim y → 0 f ( 0 , y ) = 0 \lim _{y→0}f(0,y)=0 limy→0f(0,y)=0 -
沿任意直线 y=kx趋近:
当 y=kx 时,
f ( x , k x ) = x 2 ⋅ k x x 2 + ( k x ) 2 = k x 3 x 2 + k 2 x 2 = k x 1 + k 2 f(x,kx)=\dfrac{x^{2}⋅kx}{x^{2}+(kx)^{2}}=\dfrac{kx^{3}}{x^{2}+k^{2}x^{2}}=\dfrac{kx}{1+k^{2}} f(x,kx)=x2+(kx)2x2⋅kx=x2+k2x2kx3=1+k2kx
。因此:
lim x → 0 f ( x , k x ) = lim x → 0 k x 1 + k 2 = 0 \lim _{x→0}f(x,kx)=\lim _{x→0}\dfrac{kx}{1+k^{2}}=0 x→0limf(x,kx)=x→0lim1+k2kx=0 -
沿抛物线
y = x 2 y=x^2 y=x2
趋近:
当
y = x 2 y=x^2 y=x2
时,
f ( x , x 2 ) = x 2 ⋅ x 2 x 2 + x 4 = x 2 1 + x 2 f(x,x^2)=\dfrac{x^2⋅x^2}{x^2+x^4}=\dfrac{x^2}{1+x^2} f(x,x2)=x2+x4x2⋅x2=1+x2x2
。因此:
lim x → 0 f ( x , x 2 ) = lim x → 0 x 2 1 + x 2 = 0 \lim _{x→0}f(x,x2)=\lim _{x→0}\dfrac{x^2}{1+x^2}=0 limx→0f(x,x2)=limx→01+x2x2=0
由于函数在点 (0,0)的任意方向上的极限都为 0,因此:
lim ( x , y ) → ( 0 , 0 ) f ( x , y ) = 0 \lim _{(x,y)→(0,0)}f(x,y)=0 lim(x,y)→(0,0)f(x,y)=0
2.求
lim
(
x
,
y
)
→
(
0
,
2
)
s
i
n
(
x
y
)
x
\lim _{(x,y)\rightarrow (0,2)}\dfrac{sin(xy)}{x}
(x,y)→(0,2)limxsin(xy)
解:
lim
(
x
,
y
)
→
(
0
,
2
)
s
i
n
(
x
y
)
x
=
lim
(
x
,
y
)
→
(
0
,
2
)
y
s
i
n
(
x
y
)
x
y
=
lim
(
x
,
y
)
→
(
0
,
2
)
y
.
lim
(
x
,
y
)
→
(
0
,
2
)
s
i
n
(
x
y
)
x
y
=
2
\lim _{(x,y)\rightarrow (0,2)}\dfrac{sin(xy)}{x}=\lim _{(x,y)\rightarrow (0,2)}y\dfrac{sin(xy)}{xy}=\lim _{(x,y)\rightarrow (0,2)}y.\lim _{(x,y)\rightarrow (0,2)}\dfrac{sin(xy)}{xy}=2
(x,y)→(0,2)limxsin(xy)=(x,y)→(0,2)limyxysin(xy)=(x,y)→(0,2)limy.(x,y)→(0,2)limxysin(xy)=2
2.偏导数
偏导数是多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。
这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。
定义
设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
,
y
0
)
−
f
(
x
0
,
y
0
)
Δ
x
\lim_{Δx→0}\dfrac{f(x_0+Δx,y_0)−f(x_0,y_0)}{Δx}
Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:
∂
f
∂
x
∣
(
x
0
,
y
0
)
或
f
x
′
(
x
0
,
y
0
)
\dfrac{∂f}{∂x}∣(x_0,y_0)或f'_x(x_0,y_0)
∂x∂f∣(x0,y0)或fx′(x0,y0)
类似地,如果极限:
lim
Δ
y
→
0
f
(
x
0
,
y
0
+
Δ
y
)
−
f
(
x
0
,
y
0
)
Δ
y
\lim _{Δy→0}\dfrac{f(x_0,y_0+Δy)−f(x_0,y_0)}{Δy}
limΔy→0Δyf(x0,y0+Δy)−f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:
∂
f
∂
y
∣
(
x
0
,
y
0
)
或
f
y
′
(
x
0
,
y
0
)
\dfrac{∂f}{∂y}∣(x_0,y_0)或f'_y(x_0,y_0)
∂y∂f∣(x0,y0)或fy′(x0,y0)
偏导数的计算方法
对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导。
例子
1.求
z
=
x
2
+
3
x
y
+
y
2
z=x^2+3xy+y^2
z=x2+3xy+y2
的偏导数
解:
1.对x求偏导数:
∂
z
∂
x
=
2
x
+
3
y
\dfrac{\partial z}{\partial x}=2x+3y
∂x∂z=2x+3y
2.对y求偏导数:
∂
z
∂
y
=
3
x
+
2
y
\dfrac{\partial z}{\partial y}=3x+2y
∂y∂z=3x+2y
2.求
z
=
x
2
s
i
n
2
y
z=x^2sin2y
z=x2sin2y
的偏导数
解:
1.求x的偏导数:
∂
z
∂
x
=
2
x
s
i
n
2
y
\dfrac{\partial z}{\partial x}=2xsin2y
∂x∂z=2xsin2y
2.求y的偏导数:
∂
z
∂
y
=
2
x
2
c
o
s
2
y
\dfrac{\partial z}{\partial y}=2x^2cos2y
∂y∂z=2x2cos2y
3.全微分
定义
如果函数z=f(x, y)在点(x, y)处的全增量
Δ
z
=
f
(
x
+
Δ
x
,
y
+
Δ
y
)
−
f
(
x
,
y
)
Δz=f(x+Δx,y+Δy)-f(x,y)
Δz=f(x+Δx,y+Δy)−f(x,y)
可以表示为
Δ
z
=
A
Δ
x
+
B
Δ
y
+
o
(
ρ
)
Δz=AΔx+BΔy+o(ρ)
Δz=AΔx+BΔy+o(ρ)
,其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。
可微的必要条件条件
若z=f(x,y)在(x,y)点处可微,则偏导数
f
x
′
(
x
,
y
)
和
f
y
′
(
x
,
y
)
f_{x}'(x,y)和f_{y}'(x,y)
fx′(x,y)和fy′(x,y)
存在,并且
d
z
=
f
x
′
(
x
,
y
)
Δ
x
+
f
y
′
(
x
,
y
)
Δ
y
或
d
z
=
f
x
′
(
x
,
y
)
d
x
+
f
y
′
(
x
,
y
)
d
x
dz=f_{x}'(x,y)Δx+f_{y}'(x,y)Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)dx
dz=fx′(x,y)Δx+fy′(x,y)Δy或dz=fx′(x,y)dx+fy′(x,y)dx
可微的充分条件
z=f(x,y)在(x,y)的某个邻域内有连续的偏导数
f
x
′
(
x
,
y
)
和
f
y
′
(
x
,
y
)
f_{x}'(x,y)和f_{y}'(x,y)
fx′(x,y)和fy′(x,y)
则在(x,y)处可微,
d
z
=
f
x
′
(
x
,
y
)
Δ
x
+
f
y
′
(
x
,
y
)
Δ
y
或
d
z
=
f
x
′
(
x
,
y
)
d
x
+
f
y
′
(
x
,
y
)
d
x
dz=f_{x}'(x,y)Δx+f_{y}'(x,y)Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)dx
dz=fx′(x,y)Δx+fy′(x,y)Δy或dz=fx′(x,y)dx+fy′(x,y)dx
例子
求
f
(
x
,
y
)
=
e
x
y
f(x,y)=e^{xy}
f(x,y)=exy
在(1,2)处的全微分
解:
分别求出x和y的偏导数:
f
x
′
(
x
,
y
)
=
y
e
x
y
,
f
y
′
(
x
,
y
)
=
x
e
x
y
f_x'(x,y)=ye^{xy},f_y'(x,y)=xe^{xy}
fx′(x,y)=yexy,fy′(x,y)=xexy
求出在(1,2)处x和y的偏导数:
f
x
′
(
1
,
2
)
=
2
e
2
,
f
y
′
(
1
,
2
)
=
e
2
f_x'(1,2)=2e^{2},f_y'(1,2)=e^{2}
fx′(1,2)=2e2,fy′(1,2)=e2
所以在(1,2)处的全微分:
d
z
=
2
e
2
d
x
+
e
2
d
y
dz=2e^2dx+e^2dy
dz=2e2dx+e2dy
近似计算
z=f(x, y)在点(x, y)处的全增量为
Δ
z
=
f
(
x
+
Δ
x
,
y
+
Δ
y
)
−
f
(
x
,
y
)
Δz=f(x+Δx,y+Δy)-f(x,y)
Δz=f(x+Δx,y+Δy)−f(x,y)
全微分为
d
z
=
f
x
′
(
x
,
y
)
Δ
x
+
f
y
′
(
x
,
y
)
Δ
y
dz=f_{x}'(x,y)Δx+f_{y}'(x,y)Δy
dz=fx′(x,y)Δx+fy′(x,y)Δy
在计算中我们通常使
Δ
z
≈
d
z
Δz\approx dz
Δz≈dz
所以
f
(
x
+
Δ
x
,
y
+
Δ
y
)
−
f
(
x
,
y
)
≈
f
x
′
(
x
,
y
)
Δ
x
+
f
y
′
(
x
,
y
)
Δ
y
f(x+Δx,y+Δy)-f(x,y)\approx f_{x}'(x,y)Δx+f_{y}'(x,y)Δy
f(x+Δx,y+Δy)−f(x,y)≈fx′(x,y)Δx+fy′(x,y)Δy
即:
f
(
x
+
Δ
x
,
y
+
Δ
y
)
≈
f
x
′
(
x
,
y
)
Δ
x
+
f
y
′
(
x
,
y
)
Δ
y
+
f
(
x
,
y
)
f(x+Δx,y+Δy)\approx f_{x}'(x,y)Δx+f_{y}'(x,y)Δy+f(x,y)
f(x+Δx,y+Δy)≈fx′(x,y)Δx+fy′(x,y)Δy+f(x,y)
上述公式即为近似计算公式。
例子
计算
(
1.04
)
2.02
(1.04)^{2.02}
(1.04)2.02
解:令
x
0
=
1
,
Δ
x
=
0.04
,
y
0
=
2
,
Δ
y
=
0.02
x_{0}=1,Δx=0.04,y_{0}=2,Δy=0.02
x0=1,Δx=0.04,y0=2,Δy=0.02
4.梯度
梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。
定义
设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:
∇
f
(
a
)
=
(
∂
f
∂
x
1
(
a
)
,
∂
f
∂
x
2
(
a
)
,
…
,
∂
f
∂
x
n
(
a
)
)
∇f(a)=(\dfrac{∂f}{∂x_1}(a),\dfrac{∂f}{∂x_2}(a),…,\dfrac{∂f}{∂x_n}(a))
∇f(a)=(∂x1∂f(a),∂x2∂f(a),…,∂xn∂f(a))
其中,
∂
f
∂
x
i
(
a
)
\dfrac{∂f}{∂x_i}(a)
∂xi∂f(a)
是函数 f 在点 a 处对第 i 个自变量的偏导数。
性质
- 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。
- 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。
沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。
梯度下降
梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。
算法步骤
-
初始化:选择一个初始点 x0。
-
迭代更新:对于每次迭代 k,计算当前点的梯度
∇ f ( x k ) ∇f(x_k) ∇f(xk)
,并更新参数:
x k + 1 = x k − η ∇ f ( x k ) x_{k+1}=x_k−η∇f(x_k) xk+1=xk−η∇f(xk)
其中,η 是学习率(步长),控制每次更新的步幅。 -
终止条件:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:
-
梯度的模足够小:当梯度的模(或范数)
∥ ∇ f ( x k ) ∥ ∥∇f(xk)∥ ∥∇f(xk)∥
小于某个阈值时,停止迭代。说明:
梯度的范数表示梯度向量的大小,即梯度向量的长度。
梯度的范数(模) ∥∇f(xk)∥是这个向量的欧几里得长度,定义为:
∣ ∣ ∇ f ( x k ) ∣ ∣ = ( ∂ f ∂ x 1 ) 2 + ( ∂ f ∂ x 2 ) 2 + ⋯ + ( ∂ f ∂ x n ) 2 ||∇f(x_k)||=\sqrt{(\dfrac{∂f}{∂x_1})^2+(\dfrac{∂f}{∂x_2})^2+⋯+(\dfrac{∂f}{∂x_n})^2} ∣∣∇f(xk)∣∣=(∂x1∂f)2+(∂x2∂f)2+⋯+(∂xn∂f)2 -
达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。
-
函数值变化足够小:当函数值的变化
∣ f ( x k + 1 ) − f ( x k ) ∣ ∣f(x_{k+1})−f(x_k)∣ ∣f(xk+1)−f(xk)∣
小于某个阈值时,停止迭代。
-
学习率
学习率 η是一个重要的超参数,控制着每次更新的步幅。选择合适的学习率对于梯度下降算法的性能至关重要:
- 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。
- 学习率过小:可能导致算法收敛速度过慢。
例子
一个二元函数
f
(
x
,
y
)
=
x
2
+
y
2
f(x,y)=x^2+y^2
f(x,y)=x2+y2
,使用梯度下降法寻找其最小值。
解:
-
初始化:选择初始点 x0=(3,4)。
-
计算梯度:
∇ f ( x , y ) = ( 2 x , 2 y ) ∇f(x,y)=(2x,2y) ∇f(x,y)=(2x,2y)
在点 (3,4) 处:∇f(3,4)=(6,8) -
选择学习率:设 η=0.1。
-
更新参数:
x 1 = x 0 − η ∇ f ( x 0 ) = ( 3 , 4 ) − 0.1 ⋅ ( 6 , 8 ) = ( 3 − 0.6 , 4 − 0.8 ) = ( 2.4 , 3.2 ) x_1=x_0−η∇f(x_0)=(3,4)−0.1⋅(6,8)=(3−0.6,4−0.8)=(2.4,3.2) x1=x0−η∇f(x0)=(3,4)−0.1⋅(6,8)=(3−0.6,4−0.8)=(2.4,3.2) -
继续迭代:
-
在点 (2.4,3.2) 处计算梯度:
∇ f ( 2.4 , 3.2 ) = ( 2 ⋅ 2.4 , 2 ⋅ 3.2 ) = ( 4.8 , 6.4 ) ∇f(2.4,3.2)=(2⋅2.4,2⋅3.2)=(4.8,6.4) ∇f(2.4,3.2)=(2⋅2.4,2⋅3.2)=(4.8,6.4) -
更新参数:
x 2 = x 1 − η ∇ f ( x 1 ) = ( 2.4 , 3.2 ) − 0.1 ⋅ ( 4.8 , 6.4 ) = ( 2.4 − 0.48 , 3.2 − 0.64 ) = ( 1.92 , 2.56 ) x_2=x_1−η∇f(x_1)=(2.4,3.2)−0.1⋅(4.8,6.4)=(2.4−0.48,3.2−0.64)=(1.92,2.56) x2=x1−η∇f(x1)=(2.4,3.2)−0.1⋅(4.8,6.4)=(2.4−0.48,3.2−0.64)=(1.92,2.56) -
继续迭代,直到满足终止条件。
5.二重积分
二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二
重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。
定义
设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:
∬
D
f
(
x
,
y
)
d
A
∬_Df(x,y) dA
∬Df(x,y) dA
其中 dA表示面积元素。
几何意义
如果 f(x,y)是非负函数,二重积分
∬
D
f
(
x
,
y
)
d
A
∬_Df(x,y) dA
∬Df(x,y) dA
表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。
二重积分的计算步骤-直角坐标系
在直角坐标系下,二重积分可以表示为两个定积分的乘积:
∬
D
f
(
x
,
y
)
d
A
=
∫
a
b
∫
g
(
x
)
h
(
x
)
f
(
x
,
y
)
d
y
d
x
∬_Df(x,y) dA=∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx
∬Df(x,y) dA=∫ab∫g(x)h(x)f(x,y) dy dx
其中 D 是由 x=a 到 x=b 以及 y=g(x)到 y=h(x) 围成的区域。
-
确定积分区域 D:首先,你需要确定积分区域 D的边界。这个区域可以是矩形、圆形、多边形等。
-
设置积分限:根据积分区域 D,设置积分的限。例如,对于直角坐标系中的矩形区域,积分限通常是 a≤x≤b 和 c≤y≤d。
-
写出积分表达式:根据积分限写出二重积分的表达式:
∫ a b ∫ g ( x ) h ( x ) f ( x , y ) d y d x = ∫ a b d x ∫ g ( x ) h ( x ) f ( x , y ) d y ∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx=∫_a^bdx∫_{g(x)}^{h(x)}f(x,y) dy ∫ab∫g(x)h(x)f(x,y) dy dx=∫abdx∫g(x)h(x)f(x,y) dy -
计算内层积分:先对 y 进行积分,得到关于 x 的表达式。
-
计算外层积分:再对 x 进行积分,得到最终的积分值。
例子
计算
∬
D
(
x
+
y
)
d
A
∬_D(x+y) dA
∬D(x+y) dA
,其中 D 是由 y=x 和 y=x^2 围成的区域。
解:
根据 y=x 和 y=x^2画出图形,确定x和y的取值范围:
0
≤
x
≤
1
,
x
2
≤
y
≤
x
0\leq x\leq 1, x^2\leq y \leq x
0≤x≤1,x2≤y≤x
写出积分表达式:
∬
D
(
x
+
y
)
d
A
=
∫
0
1
d
x
∫
x
2
x
(
x
+
y
)
d
y
∬_D(x+y) dA=\int _0^1dx\int _{x^2}^x(x+y)dy
∬D(x+y) dA=∫01dx∫x2x(x+y)dy
计算内层积分:
∫
0
1
d
x
∫
x
2
x
(
x
+
y
)
d
y
=
∫
0
1
[
x
y
+
1
2
y
2
]
∣
x
2
x
d
x
=
∫
0
1
(
3
2
x
2
−
x
3
−
1
2
x
4
)
d
x
\int _0^1dx\int _{x^2}^x(x+y)dy=\int _0^1[xy+\dfrac{1}{2}y^2]|_{x^2}^xdx=\int _0^1(\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x^4)dx
∫01dx∫x2x(x+y)dy=∫01[xy+21y2]∣x2xdx=∫01(23x2−x3−21x4)dx
计算外层积分:
∫
0
1
d
x
∫
x
2
x
(
x
+
y
)
d
y
=
∫
0
1
(
3
2
x
2
−
x
3
−
1
2
x
4
)
d
x
=
1
2
x
3
−
1
4
x
4
−
1
10
x
5
∣
0
1
=
3
20
\int _0^1dx\int _{x^2}^x(x+y)dy=\int _0^1(\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x^4)dx=\dfrac{1}{2}x^3-\dfrac{1}{4}x^4-\dfrac{1}{10}x^5|_0^1=\dfrac{3}{20}
∫01dx∫x2x(x+y)dy=∫01(23x2−x3−21x4)dx=21x3−41x4−101x5∣01=203
二重积分的计算步骤-极坐标系
极坐标系的二重积分计算步骤同直角坐标系,不同的是需要将直角坐标系的坐标转换为极坐标。
极坐标系的基本概念
- 原点:极坐标系的原点称为极点(通常记作 O)。
- 极径:从极点到某一点的距离称为径向距离(通常记作 r)。
- 极角:从极点到某一点的射线与极轴(通常是正 xx 轴)之间的角度称为极角(通常记作 θ)。
给定点的极坐标 (r,θ),可以转换为直角坐标 (x,y):
x
=
r
c
o
s
θ
y
=
r
s
i
n
θ
x=rcosθ\\ y=rsinθ
x=rcosθy=rsinθ
在极坐标下,二重积分的表达式为:
∬
D
f
(
x
,
y
)
d
A
=
∬
D
f
(
r
,
θ
)
r
d
r
d
θ
∬_Df(x,y) dA=∬_Df(r,θ) r dr dθ
∬Df(x,y) dA=∬Df(r,θ) r dr dθ
其中 r 和 θ 分别是极径和极角。
注意:转换为极坐标系的二重积分中需要多加一个r ,这个最容易忘记。
例子
计算
∬
D
e
x
2
+
y
2
d
A
∬_De^{x^2+y^2} dA
∬Dex2+y2 dA
,其中 D 是单位圆
x
2
+
y
2
≤
1
x^2+y^2≤1
x2+y2≤1
解:
转换坐标系:
x
2
+
y
2
≤
1
=
>
(
r
c
o
s
θ
)
2
+
(
r
s
i
n
θ
)
2
≤
1
=
>
r
2
≤
1
x^2+y^2≤1=>(rcosθ)^2+(rsinθ)^2≤1=>r^2≤1
x2+y2≤1=>(rcosθ)2+(rsinθ)2≤1=>r2≤1
确定θ和r的范围:
0
≤
θ
≤
2
π
,
0
≤
r
≤
1
0 ≤ θ≤2\pi,0≤r≤1
0≤θ≤2π,0≤r≤1
写出积分表达式:
∬
D
e
x
2
+
y
2
d
A
=
∫
0
2
π
d
θ
∫
0
1
e
r
2
r
d
r
∬_De^{x2+y2} dA=\int _0^{2\pi}dθ\int _0^1e^{r^2}rdr
∬Dex2+y2 dA=∫02πdθ∫01er2rdr
计算内层积分:
∫
0
2
π
d
θ
∫
0
1
e
r
2
r
d
r
=
∫
0
2
π
d
θ
∫
0
1
1
2
e
r
2
d
r
2
=
∫
0
2
π
1
2
e
r
2
∣
0
1
d
θ
=
∫
0
2
π
1
2
(
e
−
1
)
d
θ
\int _0^{2\pi}dθ\int _0^1e^{r^2}rdr=\int _0^{2\pi}dθ\int _0^1\dfrac{1}{2}e^{r^2}dr^2=\int _0^{2\pi}\dfrac{1}{2}e^{r^2}|_0^1dθ=\int _0^{2\pi}\dfrac{1}{2}(e-1)dθ
∫02πdθ∫01er2rdr=∫02πdθ∫0121er2dr2=∫02π21er2∣01dθ=∫02π21(e−1)dθ
计算外层积分:
∫
0
2
π
1
2
(
e
−
1
)
d
θ
=
1
2
(
e
−
1
)
θ
∣
0
2
π
=
π
(
e
−
1
)
\int _0^{2\pi}\dfrac{1}{2}(e-1)dθ=\dfrac{1}{2}(e-1)θ|_0^{2\pi}=\pi(e-1)
∫02π21(e−1)dθ=21(e−1)θ∣02π=π(e−1)
所以
∬
D
e
x
2
+
y
2
d
A
=
π
(
e
−
1
)
∬_De^{x2+y2} dA=\pi(e-1)
∬Dex2+y2 dA=π(e−1)