10.9Python数学基础-多元函数

多元函数

1.二元极限

定义

设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当
0 < ( x − a ) 2 + ( y − b ) 2 < δ 0<\sqrt{(x−a)^2+(y−b)^2}<δ 0<(xa)2+(yb)2 <δ
时,总有:

∣f(x,y)−L∣<ϵ

则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:
lim ⁡ ⁡ ( x , y ) → ( a , b ) f ( x , y ) = L \lim⁡ _{(x,y)\rightarrow (a,b)}f(x,y)=L lim(x,y)(a,b)f(x,y)=L
几何意义

当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。

如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。

例子
f ( x , y ) = x 2 y x 2 + y 2 f(x,y)=\dfrac{x^{2}y}{x^{2}+y^{2}} f(x,y)=x2+y2x2y
在点 (0,0)处的极限

解:

  1. 沿 x轴趋近:
    当 y=0 时,
    f ( x , 0 ) = x 2 ⋅ 0 x 2 + 0 2 = 0 f(x,0)=\dfrac{x^{2}⋅0}{x^{2}+0^{2}}=0 f(x,0)=x2+02x20=0
    。因此:
    lim ⁡ ⁡ x → 0 f ( x , 0 ) = 0 \lim _{⁡x→0}f(x,0)=0 x0limf(x,0)=0

  2. 沿 y轴趋近:
    当 x=0时,
    f ( 0 , y ) = 0 2 ⋅ y 0 2 + y 2 = 0 f(0,y)=\dfrac{0^{2}⋅y}{0^{2}+y^{2}}=0 f(0,y)=02+y202y=0
    。因此:
    lim ⁡ ⁡ y → 0 f ( 0 , y ) = 0 \lim⁡ _{y→0}f(0,y)=0 limy0f(0,y)=0

  3. 沿任意直线 y=kx趋近:
    当 y=kx 时,
    f ( x , k x ) = x 2 ⋅ k x x 2 + ( k x ) 2 = k x 3 x 2 + k 2 x 2 = k x 1 + k 2 f(x,kx)=\dfrac{x^{2}⋅kx}{x^{2}+(kx)^{2}}=\dfrac{kx^{3}}{x^{2}+k^{2}x^{2}}=\dfrac{kx}{1+k^{2}} f(x,kx)=x2+(kx)2x2kx=x2+k2x2kx3=1+k2kx
    。因此:
    lim ⁡ ⁡ x → 0 f ( x , k x ) = lim ⁡ ⁡ x → 0 k x 1 + k 2 = 0 \lim _{⁡x→0}f(x,kx)=\lim _{⁡x→0}\dfrac{kx}{1+k^{2}}=0 x0limf(x,kx)=x0lim1+k2kx=0

  4. 沿抛物线
    y = x 2 y=x^2 y=x2
    趋近:

    y = x 2 y=x^2 y=x2
    时,
    f ( x , x 2 ) = x 2 ⋅ x 2 x 2 + x 4 = x 2 1 + x 2 f(x,x^2)=\dfrac{x^2⋅x^2}{x^2+x^4}=\dfrac{x^2}{1+x^2} f(x,x2)=x2+x4x2x2=1+x2x2
    。因此:
    lim ⁡ ⁡ x → 0 f ( x , x 2 ) = lim ⁡ ⁡ x → 0 x 2 1 + x 2 = 0 \lim⁡ _{x→0}f(x,x2)=\lim⁡ _{x→0}\dfrac{x^2}{1+x^2}=0 limx0f(x,x2)=limx01+x2x2=0
    由于函数在点 (0,0)的任意方向上的极限都为 0,因此:
    lim ⁡ ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) = 0 \lim⁡ _{(x,y)→(0,0)}f(x,y)=0 lim(x,y)(0,0)f(x,y)=0

2.求
lim ⁡ ( x , y ) → ( 0 , 2 ) s i n ( x y ) x \lim _{(x,y)\rightarrow (0,2)}\dfrac{sin(xy)}{x} (x,y)(0,2)limxsin(xy)
解:
lim ⁡ ( x , y ) → ( 0 , 2 ) s i n ( x y ) x = lim ⁡ ( x , y ) → ( 0 , 2 ) y s i n ( x y ) x y = lim ⁡ ( x , y ) → ( 0 , 2 ) y . lim ⁡ ( x , y ) → ( 0 , 2 ) s i n ( x y ) x y = 2 \lim _{(x,y)\rightarrow (0,2)}\dfrac{sin(xy)}{x}=\lim _{(x,y)\rightarrow (0,2)}y\dfrac{sin(xy)}{xy}=\lim _{(x,y)\rightarrow (0,2)}y.\lim _{(x,y)\rightarrow (0,2)}\dfrac{sin(xy)}{xy}=2 (x,y)(0,2)limxsin(xy)=(x,y)(0,2)limyxysin(xy)=(x,y)(0,2)limy.(x,y)(0,2)limxysin(xy)=2

2.偏导数

‌偏导数是‌多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。

这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。‌

定义

设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:
lim ⁡ ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{⁡Δx→0}\dfrac{f(x_0+Δx,y_0)−f(x_0,y_0)}{Δx} ⁡Δx0limΔxf(x0+Δx,y0)f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:
∂ f ∂ x ∣ ( x 0 , y 0 ) 或 f x ′ ( x 0 , y 0 ) \dfrac{∂f}{∂x}∣(x_0,y_0)或f'_x(x_0,y_0) xf(x0,y0)fx(x0,y0)
类似地,如果极限:
lim ⁡ ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \lim⁡ _{Δy→0}\dfrac{f(x_0,y_0+Δy)−f(x_0,y_0)}{Δy} limΔy0Δyf(x0,y0+Δy)f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:
∂ f ∂ y ∣ ( x 0 , y 0 ) 或 f y ′ ( x 0 , y 0 ) \dfrac{∂f}{∂y}∣(x_0,y_0)或f'_y(x_0,y_0) yf(x0,y0)fy(x0,y0)
偏导数的计算方法‌

对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导。

例子

1.求
z = x 2 + 3 x y + y 2 z=x^2+3xy+y^2 z=x2+3xy+y2
的偏导数

解:

1.对x求偏导数:
∂ z ∂ x = 2 x + 3 y \dfrac{\partial z}{\partial x}=2x+3y xz=2x+3y
2.对y求偏导数:
∂ z ∂ y = 3 x + 2 y \dfrac{\partial z}{\partial y}=3x+2y yz=3x+2y
2.求
z = x 2 s i n 2 y z=x^2sin2y z=x2sin2y
的偏导数

解:

1.求x的偏导数:
∂ z ∂ x = 2 x s i n 2 y \dfrac{\partial z}{\partial x}=2xsin2y xz=2xsin2y
2.求y的偏导数:
∂ z ∂ y = 2 x 2 c o s 2 y \dfrac{\partial z}{\partial y}=2x^2cos2y yz=2x2cos2y

3.全微分

定义

如果函数z=f(x, y)在点(x, y)处的全增量
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) Δz=f(x+Δx,y+Δy)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)
可以表示为
Δ z = A Δ x + B Δ y + o ( ρ ) Δz=AΔx+BΔy+o(ρ) Δz=AΔx+BΔy+o(ρ)
,其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。

可微的必要条件条件

若z=f(x,y)在(x,y)点处可微,则偏导数
f x ′ ( x , y ) 和 f y ′ ( x , y ) f_{x}'(x,y)和f_{y}'(x,y) fx(x,y)fy(x,y)
存在,并且
d z = f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y 或 d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) ⁡ d x dz=f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)⁡dx dz=fx(x,y)⁡Δx+fy(x,y)⁡Δydz=fx(x,y)dx+fy(x,y)dx
可微的充分条件

z=f(x,y)在(x,y)的某个邻域内有连续的偏导数
f x ′ ( x , y ) 和 f y ′ ( x , y ) f_{x}'(x,y)和f_{y}'(x,y) fx(x,y)fy(x,y)
则在(x,y)处可微,
d z = f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y 或 d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) ⁡ d x dz=f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)⁡dx dz=fx(x,y)⁡Δx+fy(x,y)⁡Δydz=fx(x,y)dx+fy(x,y)dx
例子


f ( x , y ) = e x y f(x,y)=e^{xy} f(x,y)=exy
在(1,2)处的全微分

解:

分别求出x和y的偏导数:
f x ′ ( x , y ) = y e x y , f y ′ ( x , y ) = x e x y f_x'(x,y)=ye^{xy},f_y'(x,y)=xe^{xy} fx(x,y)=yexy,fy(x,y)=xexy
求出在(1,2)处x和y的偏导数:
f x ′ ( 1 , 2 ) = 2 e 2 , f y ′ ( 1 , 2 ) = e 2 f_x'(1,2)=2e^{2},f_y'(1,2)=e^{2} fx(1,2)=2e2,fy(1,2)=e2
所以在(1,2)处的全微分:
d z = 2 e 2 d x + e 2 d y dz=2e^2dx+e^2dy dz=2e2dx+e2dy
近似计算

z=f(x, y)在点(x, y)处的全增量为
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) Δz=f(x+Δx,y+Δy)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)
全微分为
d z = f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y dz=f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy dz=fx(x,y)⁡Δx+fy(x,y)⁡Δy
在计算中我们通常使
Δ z ≈ d z Δz\approx dz Δzdz
所以
f ( x + Δ x , y + Δ y ) − f ( x , y ) ≈ f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y f(x+Δx,y+Δy)-f(x,y)\approx f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy f(x+Δx,y+Δy)f(x,y)fx(x,y)⁡Δx+fy(x,y)⁡Δy
即:
f ( x + Δ x , y + Δ y ) ≈ f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y + f ( x , y ) f(x+Δx,y+Δy)\approx f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy+f(x,y) f(x+Δx,y+Δy)fx(x,y)⁡Δx+fy(x,y)⁡Δy+f(x,y)
上述公式即为近似计算公式。

例子

计算
( 1.04 ) 2.02 (1.04)^{2.02} (1.04)2.02
解:令
x 0 = 1 , Δ x = 0.04 , y 0 = 2 , Δ y = 0.02 x_{0}=1,Δx=0.04,y_{0}=2,Δy=0.02 x0=1,Δx=0.04,y0=2,Δy=0.02

4.梯度

梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。

定义

设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:
∇ f ( a ) = ( ∂ f ∂ x 1 ( a ) , ∂ f ∂ x 2 ( a ) , … , ∂ f ∂ x n ( a ) ) ∇f(a)=(\dfrac{∂f}{∂x_1}(a),\dfrac{∂f}{∂x_2}(a),…,\dfrac{∂f}{∂x_n}(a)) f(a)=(x1f(a),x2f(a),,xnf(a))
其中,
∂ f ∂ x i ( a ) \dfrac{∂f}{∂x_i}(a) xif(a)
是函数 f 在点 a 处对第 i 个自变量的偏导数。

性质

  1. 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。
  2. 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。

沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。

梯度下降

梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。

算法步骤

  1. 初始化:选择一个初始点 x0。

  2. 迭代更新:对于每次迭代 k,计算当前点的梯度
    ∇ f ( x k ) ∇f(x_k) f(xk)
    ,并更新参数:
    x k + 1 = x k − η ∇ f ( x k ) x_{k+1}=x_k−η∇f(x_k) xk+1=xkηf(xk)
    其中,η 是学习率(步长),控制每次更新的步幅。

  3. 终止条件:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:

    1. 梯度的模足够小:当梯度的模(或范数)
      ∥ ∇ f ( x k ) ∥ ∥∇f(xk)∥ ∥∇f(xk)
      小于某个阈值时,停止迭代。

      说明:

      梯度的范数表示梯度向量的大小,即梯度向量的长度。

      梯度的范数(模) ∥∇f(xk)∥是这个向量的欧几里得长度,定义为:
      ∣ ∣ ∇ f ( x k ) ∣ ∣ = ( ∂ f ∂ x 1 ) 2 + ( ∂ f ∂ x 2 ) 2 + ⋯ + ( ∂ f ∂ x n ) 2 ||∇f(x_k)||=\sqrt{(\dfrac{∂f}{∂x_1})^2+(\dfrac{∂f}{∂x_2})^2+⋯+(\dfrac{∂f}{∂x_n})^2} ∣∣∇f(xk)∣∣=(x1f)2+(x2f)2++(xnf)2

    2. 达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。

    3. 函数值变化足够小:当函数值的变化
      ∣ f ( x k + 1 ) − f ( x k ) ∣ ∣f(x_{k+1})−f(x_k)∣ f(xk+1)f(xk)
      小于某个阈值时,停止迭代。

学习率

学习率 η是一个重要的超参数,控制着每次更新的步幅。选择合适的学习率对于梯度下降算法的性能至关重要:

  • 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。
  • 学习率过小:可能导致算法收敛速度过慢。

例子

一个二元函数
f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f(x,y)=x2+y2
,使用梯度下降法寻找其最小值。

解:

  1. 初始化:选择初始点 x0=(3,4)。

  2. 计算梯度
    ∇ f ( x , y ) = ( 2 x , 2 y ) ∇f(x,y)=(2x,2y) f(x,y)=(2x,2y)
    在点 (3,4) 处:∇f(3,4)=(6,8)

  3. 选择学习率:设 η=0.1。

  4. 更新参数
    x 1 = x 0 − η ∇ f ( x 0 ) = ( 3 , 4 ) − 0.1 ⋅ ( 6 , 8 ) = ( 3 − 0.6 , 4 − 0.8 ) = ( 2.4 , 3.2 ) x_1=x_0−η∇f(x_0)=(3,4)−0.1⋅(6,8)=(3−0.6,4−0.8)=(2.4,3.2) x1=x0ηf(x0)=(3,4)0.1(6,8)=(30.6,40.8)=(2.4,3.2)

  5. 继续迭代

  • 在点 (2.4,3.2) 处计算梯度:
    ∇ f ( 2.4 , 3.2 ) = ( 2 ⋅ 2.4 , 2 ⋅ 3.2 ) = ( 4.8 , 6.4 ) ∇f(2.4,3.2)=(2⋅2.4,2⋅3.2)=(4.8,6.4) f(2.4,3.2)=(22.4,23.2)=(4.8,6.4)

  • 更新参数:
    x 2 = x 1 − η ∇ f ( x 1 ) = ( 2.4 , 3.2 ) − 0.1 ⋅ ( 4.8 , 6.4 ) = ( 2.4 − 0.48 , 3.2 − 0.64 ) = ( 1.92 , 2.56 ) x_2=x_1−η∇f(x_1)=(2.4,3.2)−0.1⋅(4.8,6.4)=(2.4−0.48,3.2−0.64)=(1.92,2.56) x2=x1ηf(x1)=(2.4,3.2)0.1(4.8,6.4)=(2.40.48,3.20.64)=(1.92,2.56)

  • 继续迭代,直到满足终止条件。

5.二重积分

二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二

重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。

定义

设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:
∬ D f ( x , y )   d A ∬_Df(x,y) dA Df(x,y)dA

其中 dA表示面积元素。

几何意义

如果 f(x,y)是非负函数,二重积分
∬ D f ( x , y )   d A ∬_Df(x,y) dA Df(x,y)dA
表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。

二重积分的计算步骤-直角坐标系

在直角坐标系下,二重积分可以表示为两个定积分的乘积:
∬ D f ( x , y )   d A = ∫ a b ∫ g ( x ) h ( x ) f ( x , y )   d y   d x ∬_Df(x,y) dA=∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx Df(x,y)dA=abg(x)h(x)f(x,y)dydx

其中 D 是由 x=a 到 x=b 以及 y=g(x)到 y=h(x) 围成的区域。

  1. 确定积分区域 D:首先,你需要确定积分区域 D的边界。这个区域可以是矩形、圆形、多边形等。

  2. 设置积分限:根据积分区域 D,设置积分的限。例如,对于直角坐标系中的矩形区域,积分限通常是 a≤x≤b 和 c≤y≤d。

  3. 写出积分表达式:根据积分限写出二重积分的表达式:
    ∫ a b ∫ g ( x ) h ( x ) f ( x , y )   d y   d x = ∫ a b d x ∫ g ( x ) h ( x ) f ( x , y )   d y   ∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx=∫_a^bdx∫_{g(x)}^{h(x)}f(x,y) dy  abg(x)h(x)f(x,y)dydx=abdxg(x)h(x)f(x,y)dy

  4. 计算内层积分:先对 y 进行积分,得到关于 x 的表达式。

  5. 计算外层积分:再对 x 进行积分,得到最终的积分值。

例子

计算
∬ D ( x + y )   d A ∬_D(x+y) dA D(x+y)dA
,其中 D 是由 y=x 和 y=x^2 围成的区域。

解:

根据 y=x 和 y=x^2画出图形,确定x和y的取值范围:
0 ≤ x ≤ 1 , x 2 ≤ y ≤ x 0\leq x\leq 1, x^2\leq y \leq x 0x1,x2yx
写出积分表达式:
∬ D ( x + y )   d A = ∫ 0 1 d x ∫ x 2 x ( x + y ) d y ∬_D(x+y) dA=\int _0^1dx\int _{x^2}^x(x+y)dy D(x+y)dA=01dxx2x(x+y)dy
计算内层积分:
∫ 0 1 d x ∫ x 2 x ( x + y ) d y = ∫ 0 1 [ x y + 1 2 y 2 ] ∣ x 2 x d x = ∫ 0 1 ( 3 2 x 2 − x 3 − 1 2 x 4 ) d x \int _0^1dx\int _{x^2}^x(x+y)dy=\int _0^1[xy+\dfrac{1}{2}y^2]|_{x^2}^xdx=\int _0^1(\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x^4)dx 01dxx2x(x+y)dy=01[xy+21y2]x2xdx=01(23x2x321x4)dx
计算外层积分:
∫ 0 1 d x ∫ x 2 x ( x + y ) d y = ∫ 0 1 ( 3 2 x 2 − x 3 − 1 2 x 4 ) d x = 1 2 x 3 − 1 4 x 4 − 1 10 x 5 ∣ 0 1 = 3 20 \int _0^1dx\int _{x^2}^x(x+y)dy=\int _0^1(\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x^4)dx=\dfrac{1}{2}x^3-\dfrac{1}{4}x^4-\dfrac{1}{10}x^5|_0^1=\dfrac{3}{20} 01dxx2x(x+y)dy=01(23x2x321x4)dx=21x341x4101x501=203
二重积分的计算步骤-极坐标系

极坐标系的二重积分计算步骤同直角坐标系,不同的是需要将直角坐标系的坐标转换为极坐标。

极坐标系的基本概念

  • 原点:极坐标系的原点称为极点(通常记作 O)。
  • 极径:从极点到某一点的距离称为径向距离(通常记作 r)。
  • 极角:从极点到某一点的射线与极轴(通常是正 xx 轴)之间的角度称为极角(通常记作 θ)。

给定点的极坐标 (r,θ),可以转换为直角坐标 (x,y):
x = r c o s ⁡ θ y = r s i n ⁡ θ x=rcos⁡θ\\ y=rsin⁡θ x=rcosθy=rsinθ
在极坐标下,二重积分的表达式为:
∬ D f ( x , y )   d A = ∬ D f ( r , θ )   r   d r   d θ ∬_Df(x,y) dA=∬_Df(r,θ) r dr dθ Df(x,y)dA=Df(r,θ)rdrdθ
其中 r 和 θ 分别是极径和极角。

注意:转换为极坐标系的二重积分中需要多加一个r ,这个最容易忘记。

例子

计算
∬ D e x 2 + y 2   d A ∬_De^{x^2+y^2} dA Dex2+y2dA
,其中 D 是单位圆
x 2 + y 2 ≤ 1 x^2+y^2≤1 x2+y21
解:

转换坐标系:
x 2 + y 2 ≤ 1 = > ( r c o s θ ) 2 + ( r s i n θ ) 2 ≤ 1 = > r 2 ≤ 1 x^2+y^2≤1=>(rcosθ)^2+(rsinθ)^2≤1=>r^2≤1 x2+y21=>(rcosθ)2+(rsinθ)21=>r21
确定θ和r的范围:
0 ≤ θ ≤ 2 π , 0 ≤ r ≤ 1 0 ≤ θ≤2\pi,0≤r≤1 0θ2π,0r1
写出积分表达式:
∬ D e x 2 + y 2   d A = ∫ 0 2 π d θ ∫ 0 1 e r 2 r d r ∬_De^{x2+y2} dA=\int _0^{2\pi}dθ\int _0^1e^{r^2}rdr Dex2+y2dA=02πdθ01er2rdr
计算内层积分:
∫ 0 2 π d θ ∫ 0 1 e r 2 r d r = ∫ 0 2 π d θ ∫ 0 1 1 2 e r 2 d r 2 = ∫ 0 2 π 1 2 e r 2 ∣ 0 1 d θ = ∫ 0 2 π 1 2 ( e − 1 ) d θ \int _0^{2\pi}dθ\int _0^1e^{r^2}rdr=\int _0^{2\pi}dθ\int _0^1\dfrac{1}{2}e^{r^2}dr^2=\int _0^{2\pi}\dfrac{1}{2}e^{r^2}|_0^1dθ=\int _0^{2\pi}\dfrac{1}{2}(e-1)dθ 02πdθ01er2rdr=02πdθ0121er2dr2=02π21er201dθ=02π21(e1)dθ
计算外层积分:
∫ 0 2 π 1 2 ( e − 1 ) d θ = 1 2 ( e − 1 ) θ ∣ 0 2 π = π ( e − 1 ) \int _0^{2\pi}\dfrac{1}{2}(e-1)dθ=\dfrac{1}{2}(e-1)θ|_0^{2\pi}=\pi(e-1) 02π21(e1)dθ=21(e1)θ02π=π(e1)
所以
∬ D e x 2 + y 2   d A = π ( e − 1 ) ∬_De^{x2+y2} dA=\pi(e-1) Dex2+y2dA=π(e1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值