目录
[TOC]
🚀 MCP 动态发现工具机制:打造自适应智能体系统
在前面的博客中,我们搭建了 MCP Server 和 Client,
并实现了多工具协作链,初步具备了智能体执行复杂任务的能力。
但随着系统规模扩大,问题也出现了:
-
工具数量越来越多,难以手动管理
-
每次新增工具,都需要手动修改代码
-
智能体无法自动了解自己有哪些新能力
因此,本篇我们将实现 ——
MCP动态发现机制(Dynamic Discovery),
让 MCP Client 能够实时查询可用工具列表,并动态适配任务!
🌟 为什么要支持动态发现?
静态注册(传统方式) | 动态发现(智能方式) |
---|---|
工具必须提前硬编码 | 工具可以运行时查询 |
新增/删除工具需修改代码 | 无需改动,自动识别 |
工具描述靠人工维护 | 工具元信息统一标准 |
只能固定链路 | 能根据用户需求灵活组合 |
动态发现,意味着让智能体系统真正拥有自进化、自感知能力!
🏗️ MCP 动态发现核心设计
MCP Server 端通过接口暴露:
-
当前注册的所有 Tools 列表
-
每个 Tool 的详细描述(输入参数、输出参数)
MCP Client 端在运行时:
-
查询工具目录
-
根据描述动态调用合适的工具
最终,AI Agent 可以基于这些动态信息,自行规划工作流!
🛠️ MCP Server 实现动态工具列表
在 MCP Server 侧,我们只需要确保:
-
每个工具都带有标准描述(docstring)
-
MCP SDK 会自动组织成标准格式(符合 JSON Schema)
如果你使用 @tool()
装饰器注册工具,MCP Server 会自动生成工具目录。
无需额外开发!
例如:
from mcp.server.fastmcp import tool
@tool()
def search_knowledge_base(keyword: str) -> str:
"""在企业知识库中搜索指定关键词,返回摘要结果。"""
# 伪代码
return "知识点摘要……"
这个工具的描述,自动包含:
-
工具名:
search_knowledge_base
-
功能描述
-
输入参数:
keyword
-
输出类型
Server 会在初始化时自动暴露这些信息。
🖥️ MCP Client 动态查询示例
在 MCP Client 中,我们可以添加动态查询工具的逻辑:
from mcp.client import MCPClient
client = MCPClient(server_address="http://localhost:8000")
client.connect()
# 动态获取当前所有可用工具
tools = client.list_tools()
print("当前服务器提供的工具列表:")
for tool in tools:
print(f"- {tool['name']}: {tool['description']}")
client.disconnect()
输出示例:
当前服务器提供的工具列表:
- list_txt_files: 列出指定目录下所有 .txt 文件
- read_file_content: 读取指定文件的内容
- summarize_text: 总结文本要点
- search_knowledge_base: 在企业知识库中搜索指定关键词
这样,客户端无需硬编码,能够实时感知 Server 的能力变化。
🤖 智能体应用:动态选择工具执行任务
在实际应用中,我们可以让智能体根据用户输入动态匹配合适工具:
简单逻辑示例:
def select_tool_for_query(query, tools):
for tool in tools:
if "搜索" in query and "知识库" in tool["description"]:
return tool["name"]
if "列出" in query and "txt" in tool["description"]:
return tool["name"]
return None
智能体根据意图(比如用户提到 "搜索知识"),
动态选择 search_knowledge_base
工具,发起调用!
这就是智能体具备了自主选择动作的能力!
🧠 技术总结
通过实现 MCP 动态发现机制,我们让系统具备了:
-
✅ 实时感知可用工具
-
✅ 动态适配新增或下线的工具
-
✅ 智能推理选择最优工具
-
✅ 大幅降低开发与维护成本
-
✅ 让智能体真正具备自适应成长能力
未来可以进一步扩展:
-
动态发现 Resource(资源型接口)
-
动态发现 Prompt(提示模板)
-
多 Server 统一发现与编排(Multi-MCP Hub)
🎯 预告:下一篇挑战
下一篇,我们将继续升级系统:
-
设计 意图识别 + 工具自动路由
-
支持 基于上下文动态组合多工具
-
实现 MCP Server集群与负载均衡
打造真正可扩展、可成长的超级智能体!