目录
🧠 多轮对话链(Multi-Turn Dialogue Chain)核心设计
🛠️ 生命周期管理(Lifecycle Management)
🚀 MCP 智能体多轮对话链、上下文记忆与生命周期管理
在前面,我们实现了:
✅ 动态推理链(Dynamic Reasoning Chain)
✅ 依赖任务图(Dependency Task Graph)
✅ 动态生成子智能体(Agent Spawn)
目前系统具备:
-
任务分解
-
工具调用
-
智能体协作
但:
❗ 目前所有任务 一次性完成
❗ 没有 上下文记忆
❗ 智能体只能单次响应,无法持续多轮对话
如果想让智能体像人一样持续协作、记住历史、自动管理自身生命周期,
必须引入:
对话链(Dialogue Chain) + 记忆(Memory) + 生命周期管理(Lifecycle)
🧠 多轮对话链(Multi-Turn Dialogue Chain)核心设计
对话链模型:
User ↔ Orchestrator Agent
↔ Specialized Agent 1
↔ Specialized Agent 2
↔ Dynamic Spawned Agent(s)
对话上下文:
-
每轮用户输入
-
每轮Agent响应
-
中间状态、历史结果
对话链记录所有交互历史。
🧠 上下文记忆(Memory)核心设计
记忆内容:
内容 | 示例 |
---|---|
用户历史输入 | 上一轮提问 |
上一轮响应 | 智能体回答 |
中间状态 | 已完成任务、工具调用结果 |
未完成子任务 | 动态链路中的剩余任务 |
每个 Agent 持有自己的记忆对象。
Memory 示例类:
class Memory:
def __init__(self):
self.history = []
self.known_facts = {}
def add_interaction(self, user_input, response):
self.history.append({"input": user_input, "response": response})
def remember(self, key, value):
self.known_facts[key] = value
def recall(self, key):
return self.known_facts.get(key, None)
🛠️ Agent 扩展:接入 Memory
所有 Agent 扩展为:
class AgentBase:
def __init__(self, name: str, message_bus: MessageBus):
self.name = name
self.bus = message_bus
self.bus.register_agent(self)
self.memory = Memory() # 每个Agent独有记忆
def receive_message(self, message: Message):
print(f"[{self.name}] 收到消息:{message.content}")
self.process_message(message)
def process_message(self, message: Message):
"""子类重写,执行任务并记录到记忆中"""
pass
任务完成时:
self.memory.add_interaction(message.content, "处理结果XXX")
🛠️ 对话链(Dialogue Chain)管理器
class DialogueChain:
def __init__(self):
self.turns = []
def add_turn(self, user_input, agent_response):
self.turns.append({"user": user_input, "agent": agent_response})
def show_history(self):
for idx, turn in enumerate(self.turns):
print(f"[轮次{idx+1}] 用户:{turn['user']} → 智能体:{turn['agent']}")
Orchestrator 在每轮对话更新 DialogueChain。
🛠️ 生命周期管理(Lifecycle Management)
新增:
-
动态生成Agent(已实现)
-
自动销毁Agent(使用完毕即注销)
MessageBus 扩展:
def unregister_agent(self, agent_name):
if agent_name in self.agents:
del self.agents[agent_name]
print(f"Agent {agent_name} 已销毁。")
在任务结束后,Agent 可发送消息:
self.bus.unregister_agent(self.name)
支持:
-
临时 Agent 执行完自动删除
-
长期 Agent 保持状态(根据内存判断是否保留)
🧪 示例:用户-智能体多轮对话演示
dialogue = DialogueChain()
# 第1轮
user_input = "列出txt文件"
orchestrator.handle(user_input)
dialogue.add_turn(user_input, "已列出:['a.txt', 'b.txt']")
# 第2轮
user_input = "请总结 a.txt 内容"
orchestrator.handle(user_input)
dialogue.add_turn(user_input, "总结完成:XXX")
# 展示历史
dialogue.show_history()
输出:
[轮次1] 用户:列出txt文件 → 智能体:已列出:['a.txt', 'b.txt']
[轮次2] 用户:请总结 a.txt 内容 → 智能体:总结完成:XXX
此时:
-
FileAgent 已记忆文件列表
-
SummaryAgent 已记忆之前总结结果
-
用户和Agent共享对话上下文
🧠 技术总结
这一篇,我们让 MCP 智能体系统:
✅ 多轮对话管理(Dialogue Chain)
✅ 每个Agent独立记忆(Memory)
✅ 动态生成 / 自动销毁 Agent(Lifecycle)
✅ Agent间共享上下文,支持连续任务
你的系统,已经具备:
持续交互 → 记忆积累 → 灵活扩展 → 自主决策 的完整智能体特征!
🎯 下一步挑战
下一篇,我们将挑战:
-
Agent 之间 多轮自主对话链(Multi-Agent Conversation)
-
复杂任务的 自主协商与投票机制(Negotiation & Voting)
-
智能体自治组织结构(Agent Governance)!
迈向 群体智能(Collective Intelligence) 和AI组织自治!