MCP 智能体多轮对话链、上下文记忆与生命周期管理

目录

🚀 MCP 智能体多轮对话链、上下文记忆与生命周期管理

🧠 多轮对话链(Multi-Turn Dialogue Chain)核心设计

对话链模型:

🧠 上下文记忆(Memory)核心设计

记忆内容:

Memory 示例类:

🛠️ Agent 扩展:接入 Memory

🛠️ 对话链(Dialogue Chain)管理器

🛠️ 生命周期管理(Lifecycle Management)

🧪 示例:用户-智能体多轮对话演示

🧠 技术总结

🎯 下一步挑战


🚀 MCP 智能体多轮对话链、上下文记忆与生命周期管理

在前面,我们实现了:

✅ 动态推理链(Dynamic Reasoning Chain)
✅ 依赖任务图(Dependency Task Graph)
✅ 动态生成子智能体(Agent Spawn)

目前系统具备:

  • 任务分解

  • 工具调用

  • 智能体协作

但:

❗ 目前所有任务 一次性完成
❗ 没有 上下文记忆
❗ 智能体只能单次响应,无法持续多轮对话

如果想让智能体像人一样持续协作记住历史自动管理自身生命周期
必须引入:

对话链(Dialogue Chain) + 记忆(Memory) + 生命周期管理(Lifecycle)


🧠 多轮对话链(Multi-Turn Dialogue Chain)核心设计

对话链模型:

User ↔ Orchestrator Agent
       ↔ Specialized Agent 1
       ↔ Specialized Agent 2
       ↔ Dynamic Spawned Agent(s)

对话上下文:

  • 每轮用户输入

  • 每轮Agent响应

  • 中间状态、历史结果

对话链记录所有交互历史


🧠 上下文记忆(Memory)核心设计

记忆内容:

内容示例
用户历史输入上一轮提问
上一轮响应智能体回答
中间状态已完成任务、工具调用结果
未完成子任务动态链路中的剩余任务

每个 Agent 持有自己的记忆对象

Memory 示例类:

class Memory:
    def __init__(self):
        self.history = []
        self.known_facts = {}

    def add_interaction(self, user_input, response):
        self.history.append({"input": user_input, "response": response})

    def remember(self, key, value):
        self.known_facts[key] = value

    def recall(self, key):
        return self.known_facts.get(key, None)

🛠️ Agent 扩展:接入 Memory

所有 Agent 扩展为:

class AgentBase:
    def __init__(self, name: str, message_bus: MessageBus):
        self.name = name
        self.bus = message_bus
        self.bus.register_agent(self)
        self.memory = Memory()  # 每个Agent独有记忆

    def receive_message(self, message: Message):
        print(f"[{self.name}] 收到消息:{message.content}")
        self.process_message(message)

    def process_message(self, message: Message):
        """子类重写,执行任务并记录到记忆中"""
        pass

任务完成时:

self.memory.add_interaction(message.content, "处理结果XXX")

🛠️ 对话链(Dialogue Chain)管理器

class DialogueChain:
    def __init__(self):
        self.turns = []

    def add_turn(self, user_input, agent_response):
        self.turns.append({"user": user_input, "agent": agent_response})

    def show_history(self):
        for idx, turn in enumerate(self.turns):
            print(f"[轮次{idx+1}] 用户:{turn['user']} → 智能体:{turn['agent']}")

Orchestrator 在每轮对话更新 DialogueChain。


🛠️ 生命周期管理(Lifecycle Management)

新增:

  • 动态生成Agent(已实现)

  • 自动销毁Agent(使用完毕即注销)

MessageBus 扩展:

def unregister_agent(self, agent_name):
    if agent_name in self.agents:
        del self.agents[agent_name]
        print(f"Agent {agent_name} 已销毁。")

在任务结束后,Agent 可发送消息:

self.bus.unregister_agent(self.name)

支持:

  • 临时 Agent 执行完自动删除

  • 长期 Agent 保持状态(根据内存判断是否保留)


🧪 示例:用户-智能体多轮对话演示

dialogue = DialogueChain()

# 第1轮
user_input = "列出txt文件"
orchestrator.handle(user_input)
dialogue.add_turn(user_input, "已列出:['a.txt', 'b.txt']")

# 第2轮
user_input = "请总结 a.txt 内容"
orchestrator.handle(user_input)
dialogue.add_turn(user_input, "总结完成:XXX")

# 展示历史
dialogue.show_history()

输出:

[轮次1] 用户:列出txt文件 → 智能体:已列出:['a.txt', 'b.txt']
[轮次2] 用户:请总结 a.txt 内容 → 智能体:总结完成:XXX

此时:

  • FileAgent 已记忆文件列表

  • SummaryAgent 已记忆之前总结结果

  • 用户和Agent共享对话上下文


🧠 技术总结

这一篇,我们让 MCP 智能体系统:

✅ 多轮对话管理(Dialogue Chain)
✅ 每个Agent独立记忆(Memory)
✅ 动态生成 / 自动销毁 Agent(Lifecycle)
✅ Agent间共享上下文,支持连续任务

你的系统,已经具备:

持续交互 → 记忆积累 → 灵活扩展 → 自主决策 的完整智能体特征!


🎯 下一步挑战

下一篇,我们将挑战:

  • Agent 之间 多轮自主对话链(Multi-Agent Conversation)

  • 复杂任务的 自主协商与投票机制(Negotiation & Voting)

  • 智能体自治组织结构(Agent Governance)

迈向 群体智能(Collective Intelligence)AI组织自治

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值