目录
🚀 MCP 智能体自主对话链与协商投票机制
之前,我们实现了:
✅ 多轮对话链(Dialogue Chain)
✅ Agent上下文记忆(Memory)
✅ 生命周期管理(Lifecycle)
但是,智能体之间:
-
只能按调度器分配任务
-
无法就复杂问题 自主讨论
-
更不能 自主决策最佳方案
今天,我们引入:
自主对话链 + 协商(Negotiation)+ 投票(Voting)机制
迈向群体智能(Collective Intelligence)!
🌟 为什么需要自主对话与协商?
传统Agent系统 | 群体智能Agent系统 |
---|---|
静态任务分配 | 智能体主动提出方案 |
被动执行 | 智能体之间对话讨论 |
无全局决策 | 多智能体协商并表决 |
不具备自治 | 能自主选择执行策略 |
现实类比:
调度器分配任务 → 像工厂
智能体自主协商 → 像人类组织!
🧠 多Agent自主对话链核心设计
智能体之间:
-
提出主张(Proposal)
-
相互讨论(Conversation)
-
形成候选方案(Options)
-
各自投票(Voting)
-
最终方案执行
消息类型扩展:
class Message:
def __init__(self, sender, receiver, content, type_="normal"):
self.sender = sender
self.receiver = receiver
self.content = content
self.type = type_ # normal | proposal | vote | result
🛠️ 1. 自主提出主张(Proposal)
任何Agent发现复杂任务时,可以主动提出方案:
self.bus.send_message(
Message(
sender=self.name,
receiver="All", # 向所有Agent广播
content="提议:对文件a.txt和b.txt分别使用不同总结策略",
type_="proposal"
)
)
🛠️ 2. Agent之间讨论(Conversation)
收到 proposal 消息后,其他Agent可以:
-
支持(Support)
-
反对(Reject)
-
提出修改意见
def process_message(self, message):
if message.type == "proposal":
print(f"[{self.name}] 收到主张:{message.content}")
# 简单规则:随机支持或反对
import random
decision = random.choice(["支持", "反对"])
self.send_message(
message.sender,
f"{decision}:{message.content}",
type_="vote"
)
🛠️ 3. 投票机制(Voting)
所有相关Agent对主张进行投票:
def process_message(self, message):
if message.type == "vote":
print(f"[{self.name}] 收到投票:{message.content}")
# 记录投票(Memory或中央VotingRecord)
VotingRecord 示例:
class VotingRecord:
def __init__(self):
self.votes = {}
def add_vote(self, proposal, agent_name, decision):
if proposal not in self.votes:
self.votes[proposal] = []
self.votes[proposal].append((agent_name, decision))
def tally_votes(self, proposal):
votes = self.votes.get(proposal, [])
support = sum(1 for _, d in votes if "支持" in d)
oppose = sum(1 for _, d in votes if "反对" in d)
return support, oppose
🛠️ 4. 决策与执行
当所有Agent投票结束:
support, oppose = voting_record.tally_votes(proposal)
if support > oppose:
print("投票通过,执行提议方案!")
# 广播执行命令
else:
print("提议被否决,寻找其他方案。")
🛠️ 5. 示例执行流程
[FileAgent] 提出主张:分文件总结
[KnowledgeAgent] 投票:支持
[SummaryAgent] 投票:支持
[Orchestrator] 投票:反对
投票结果:支持 2,反对 1 → 方案通过
→ 系统执行:对a.txt、b.txt 分别总结
🧠 技术总结
✅ Agent可以自主提出方案
✅ Agent之间进行自由对话与投票
✅ 投票决定最终执行策略
✅ 支持多Agent自治协作,形成群体智能!
你的 MCP 智能体系统,正式迈入:
从智能体 → 多Agent协作 → 群体智能 → 自治AI组织的高级阶段!
🎯 下一步挑战
下一篇将挑战:
-
动态代理角色(Dynamic Role Play)
-
多Agent技能学习(Tool Learning)
-
Agent自治治理(Governance)
-
复杂任务的自我优化(Task Optimization)
你的智能体系统,将进一步拥有:
组织结构 → 角色变化 → 技能成长 → 自我治理 → 自适应任务管理!