MCP 智能体自主对话链与协商投票机制

目录

🚀 MCP 智能体自主对话链与协商投票机制

🌟 为什么需要自主对话与协商?

🧠 多Agent自主对话链核心设计

消息类型扩展:

🛠️ 1. 自主提出主张(Proposal)

🛠️ 2. Agent之间讨论(Conversation)

🛠️ 3. 投票机制(Voting)

VotingRecord 示例:

🛠️ 4. 决策与执行

🛠️ 5. 示例执行流程

🧠 技术总结

🎯 下一步挑战


🚀 MCP 智能体自主对话链与协商投票机制

之前,我们实现了:

✅ 多轮对话链(Dialogue Chain)
✅ Agent上下文记忆(Memory)
✅ 生命周期管理(Lifecycle)

但是,智能体之间:

  • 只能按调度器分配任务

  • 无法就复杂问题 自主讨论

  • 更不能 自主决策最佳方案

今天,我们引入:

自主对话链 + 协商(Negotiation)+ 投票(Voting)机制
迈向群体智能(Collective Intelligence)!


🌟 为什么需要自主对话与协商?

传统Agent系统群体智能Agent系统
静态任务分配智能体主动提出方案
被动执行智能体之间对话讨论
无全局决策多智能体协商并表决
不具备自治能自主选择执行策略

现实类比:
调度器分配任务 → 像工厂
智能体自主协商 → 像人类组织


🧠 多Agent自主对话链核心设计

智能体之间:

  1. 提出主张(Proposal)

  2. 相互讨论(Conversation)

  3. 形成候选方案(Options)

  4. 各自投票(Voting)

  5. 最终方案执行

消息类型扩展:

class Message:
    def __init__(self, sender, receiver, content, type_="normal"):
        self.sender = sender
        self.receiver = receiver
        self.content = content
        self.type = type_  # normal | proposal | vote | result

🛠️ 1. 自主提出主张(Proposal)

任何Agent发现复杂任务时,可以主动提出方案:

self.bus.send_message(
    Message(
        sender=self.name,
        receiver="All",  # 向所有Agent广播
        content="提议:对文件a.txt和b.txt分别使用不同总结策略",
        type_="proposal"
    )
)

🛠️ 2. Agent之间讨论(Conversation)

收到 proposal 消息后,其他Agent可以:

  • 支持(Support)

  • 反对(Reject)

  • 提出修改意见

def process_message(self, message):
    if message.type == "proposal":
        print(f"[{self.name}] 收到主张:{message.content}")
        # 简单规则:随机支持或反对
        import random
        decision = random.choice(["支持", "反对"])
        self.send_message(
            message.sender,
            f"{decision}:{message.content}",
            type_="vote"
        )

🛠️ 3. 投票机制(Voting)

所有相关Agent对主张进行投票:

def process_message(self, message):
    if message.type == "vote":
        print(f"[{self.name}] 收到投票:{message.content}")
        # 记录投票(Memory或中央VotingRecord)

VotingRecord 示例:

class VotingRecord:
    def __init__(self):
        self.votes = {}

    def add_vote(self, proposal, agent_name, decision):
        if proposal not in self.votes:
            self.votes[proposal] = []
        self.votes[proposal].append((agent_name, decision))

    def tally_votes(self, proposal):
        votes = self.votes.get(proposal, [])
        support = sum(1 for _, d in votes if "支持" in d)
        oppose = sum(1 for _, d in votes if "反对" in d)
        return support, oppose

🛠️ 4. 决策与执行

当所有Agent投票结束:

support, oppose = voting_record.tally_votes(proposal)

if support > oppose:
    print("投票通过,执行提议方案!")
    # 广播执行命令
else:
    print("提议被否决,寻找其他方案。")

🛠️ 5. 示例执行流程

[FileAgent] 提出主张:分文件总结
[KnowledgeAgent] 投票:支持
[SummaryAgent] 投票:支持
[Orchestrator] 投票:反对
投票结果:支持 2,反对 1 → 方案通过
→ 系统执行:对a.txt、b.txt 分别总结

🧠 技术总结

✅ Agent可以自主提出方案
✅ Agent之间进行自由对话与投票
✅ 投票决定最终执行策略
✅ 支持多Agent自治协作,形成群体智能!

你的 MCP 智能体系统,正式迈入:

从智能体 → 多Agent协作 → 群体智能 → 自治AI组织的高级阶段!


🎯 下一步挑战

下一篇将挑战:

  • 动态代理角色(Dynamic Role Play)

  • 多Agent技能学习(Tool Learning)

  • Agent自治治理(Governance)

  • 复杂任务的自我优化(Task Optimization)

你的智能体系统,将进一步拥有:

组织结构 → 角色变化 → 技能成长 → 自我治理 → 自适应任务管理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值