前言:在数字信号的传输中,发送机往往要加扰码器,相对应的接收端要加解扰器。扰乱器起的作用是:如果输入数字序列是短周期的,将把它按照某种规律变换(扰乱)为长周期,并且使输出序列(以后将称为信道序列)中的过判决点(在二进制中即过零点)接近码总数的一半。解扰器在接收端将被扰乱后的序列还原为输入发送机的数字序列(消息)。最简单的扰码方法是在输入数字序列上加一个最长线性移位寄存器序列,使前者变换为信道序列;相应地在接收端从信道序列中减去同步的同一最长移位寄存器序列,可还原为原数字序列。
一、m序列的产生及性质
1、m序列的產生:m序列(最长线性反馈移存器序列)是由线性反馈的移存器产生的周期(2n-1)最长的一种序列。寄存器的起始状态可以是非全0的2n-1状态之一。
2、本原多项式f(x):有以下3條性質:
(1)其次数为n
(2)f(x)为既约的,即不能被 1或它本身以外的其他多项式除尽。
(3)当 q=2n-1时,则f(x)能除尽1+ xq 。当 q<2n-1时, f(x)不能除尽1+ xq。
3、产生m序列的n级移位寄存器
移位寄存器可用一个n阶的本原多项式f(x)表示,这个多项式的k次幂系数为1时代表第k级移位寄存器有反馈线,否则无反馈线,x本身的取值并无实际意义,也不需要去计算x的值。0次幂系数或常数为1,代表输入反馈线始终存在。f(x)为特征多项式。
4、m序列的性質
(1)均衡性:在m序列的一周期中,“1”和“0”的数目基本相等。准确地说,“1”的个数比“0”的个数多一个。
(2)游程分布:游程:把一个序列中取值相同的那些相继的(连在一起的)元素合称为一个“游程”。在一个游程中元素的个数称为游程长度。游程数共有2n-1,长度为k的游程数目占总数的2-k,其中1≤k ≤n-1,而且在长度为k的游程中其中1≤k ≤n-2,连“1”的游程和“0”的游程各占一半。
(3)移位相加特性:一个m序列与其经任意次迟延移位产生的另一不同序列模2相加,得到的仍是的某次迟延移位序列。即:M(p) + M(r) = M(s)
(4)自相關性
(5)功率譜密度
二、扰码和解扰的原理
1、加扰技术:不用增加多余度而搅乱信号,改变数字信号统计特性,使其近似于白噪声统计特性的一种技术。这种技术的基础是建立在反馈移存器序列(或伪随机序列)理论之上的。
在数字信号的传输中,发送机往往要加扰码器,相对应的接收端要加解扰器在数字信号的传输中,发送机往往要加扰码器,相对应的接收端要加解扰器。在数字信号的传输中,发送机往往要加扰码器,相对应的接收端要加解扰器。