深度强化学习系列(4): Q-Learning原理与实现

在这里插入图片描述
论文地址: http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf

Q-Learning是发表于1989年的一种value-based,且model-free的特别经典的off-policy算法,近几年的DQN等算法均是在此基础上通过神经网络进行展开的。

1. 相关简介

强化学习学习过程中,通常是将学习的序列数据存储在表格中,通过获取表中的数据,利用greedy策略进行最大化Q值函数的学习方法。

2. 原理及推导

Q-Learning就是在某一个时刻的状态(state)下,采取动作a能够获得收益的期望,环境会根据agent的动作反馈相应的reward奖赏,核心就是将state和action构建成一张Q_table表来存储Q值,然后根据Q值来选取能够获得最大收益的动作,如表所示:

Q-Table a 1 a_{1} a1 a 2 a_{2} a2
s 1 s_{1} s1 Q ( s 1 , a 1 ) Q(s_{1},a_{1}) Q(s1,a1) Q ( s 1 , a 2 ) Q(s_{1},a_{2}) Q(s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@RichardWang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值