论文地址: http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf
Q-Learning是发表于1989年的一种value-based,且model-free的特别经典的off-policy算法,近几年的DQN等算法均是在此基础上通过神经网络进行展开的。
1. 相关简介
强化学习学习过程中,通常是将学习的序列数据存储在表格中,通过获取表中的数据,利用greedy策略进行最大化Q值函数的学习方法。
2. 原理及推导
Q-Learning就是在某一个时刻的状态(state)下,采取动作a能够获得收益的期望,环境会根据agent的动作反馈相应的reward奖赏,核心就是将state和action构建成一张Q_table表来存储Q值,然后根据Q值来选取能够获得最大收益的动作,如表所示:
Q-Table | a 1 a_{1} a1 | a 2 a_{2} a2 |
---|---|---|
s 1 s_{1} s1 | Q ( s 1 , a 1 ) Q(s_{1},a_{1}) Q(s1,a1) | Q ( s 1 , a 2 ) Q(s_{1},a_{2}) Q(s |