Laplacian of Gaussian (LoG)

Laplacian of Gaussian (LoG)

 

As Laplace operator may detect edges as well as noise (isolated, out-of-range), it may be desirable to smooth the image first by convolution with a Gaussian kernel of width $\sigma$

 

\begin{displaymath}G_{\sigma}(x,y)=\frac{1}{\sqrt{2\pi\sigma^2}}exp[-\frac{x^2+y^2}{2\sigma^2}] \end{displaymath}

 

to suppress the noise before using Laplace for edge detection:

 

\begin{displaymath}\bigtriangleup[G_{\sigma}(x,y) * f(x,y)]=[\bigtriangleup G_{\sigma}(x,y)] * f(x,y)=LoG*f(x,y)\end{displaymath}

 

The first equal sign is due to the fact that

 

\begin{displaymath}\frac{d}{dt}[h(t)*f(t)]=\frac{d}{dt} \int f(\tau) h(t-\tau)d\......int f(\tau) \frac{d}{dt} h(t-\tau)d\tau=f(t)*\frac{d}{dt} h(t)\end{displaymath}

 

So we can obtain the  Laplacian of Gaussian  $\bigtriangleup G_{\sigma}(x,y)$ first and then convolve it with the input image. To do so, first consider

 

\begin{displaymath}\frac{\partial}{\partial x} G_{\sigma}(x,y)=\frac{\partia......+y^2)/2\sigma^2}=-\frac{x}{\sigma^2}e^{-(x^2+y^2)/2\sigma^2}\end{displaymath}

 

and

 

\begin{displaymath}\frac{\partial^2}{\partial^2 x} G_{\sigma}(x,y)=\frac{x^2......gma^2}=\frac{x^2-\sigma^2}{\sigma^4}e^{-(x^2+y^2)/2\sigma^2}\end{displaymath}

 

Note that for simplicity we omitted the normalizing coefficient  $1/\sqrt{2\pi \sigma^2}$. Similarly we can get

 

\begin{displaymath}\frac{\partial^2}{\partial^2 y} G_{\sigma}(x,y)=\frac{y^2-\sigma^2}{\sigma^4}e^{-(x^2+y^2)/2\sigma^2}\end{displaymath}

 

Now we have LoG as an operator or convolution kernel defined as

 

\begin{displaymath}LoG \stackrel{\triangle}{=}\bigtriangleup G_{\sigma}(x,y)=\f......)=\frac{x^2+y^2-2\sigma^2}{\sigma^4}e^{-(x^2+y^2)/2\sigma^2}\end{displaymath}

 

The Gaussian $G(x,y)$ and its first and second derivatives $G'(x,y)$ and $\bigtriangleup G(x,y)$ are shown here:

LoG.gif

LoG_plot.gif

This 2D LoG can be approximated by a 5 by 5 convolution kernel such as

 

\begin{displaymath}\left[ \begin{array}{ccccc}0 & 0 & 1 & 0 & 0 \\0 & 1 &......0 & 1 & 2 & 1 & 0 \\0 & 0 & 1 & 0 & 0 \end{array} \right]\end{displaymath}

 

The kernel of any other sizes can be obtained by approximating the continuous expression of LoG given above. However, make sure that the sum (or average) of all elements of the kernel has to be zero (similar to the Laplace kernel) so that the convolution result of a homogeneous regions is always zero.

The edges in the image can be obtained by these steps:

  • Applying LoG to the image
  • Detection of zero-crossings in the image
  • Threshold the zero-crossings to keep only those strong ones (large difference between the positive maximum and the negative minimum)
The last step is needed to suppress the weak zero-crossings most likely caused by noise.

forest_LoG.gif

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值