高等数学复习之导数的运算(等价无穷小替换)

本文详细介绍了导数的运算法则,包括基本初等函数的求导公式,等价无穷小替换的应用,如arcsinx~x、αx~x及ln(x+1)等,同时涵盖了加减乘除法则、反函数求导和复合函数链式法则。必备的知识点,帮助理解并解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前其实是看了几遍了,但一遇到做题还是犯晕,导数有何运算法则呢?和积分公式一样,需要常看看。

1、基本初等函数的求导公式,详见《积分与导数公式记忆》

导数公式的推导用到了函数求极限有些是用等价无穷小替换的,如

何谓无穷小呢?指的是极限为0的变量,可以是序列也可以是函数。

常用的无穷小量替换??

以下的量都指的是x→0的情况,明显它们都是无穷小量。要说明的是不要狭隘地就认为x只可以是x,它指代的是无穷小量。

第一组等价无穷小替换:

arcsinx∼sinx∼tanx~x,这是我们使用最多,最常见的等价无穷小替换。

第二组等价无穷小替换:

(1+x)^{a}-1 ∼ αx(α≠0),如果看见(1+x)^{a}的形式,就很可能要用这种等价无穷小替换了,要注意负指数幂和分数指数幂也要看出来,如:\sqrt{(1+x)}-1 ~ \frac{1}{2}  *  x

第三组等价无穷小替换:

e^{x}-1 \simx∼ln(x+1),这个等价无穷小变换也是可以经常见到的。

另外还有其它的一些常用等价无穷小代换,可以用上面三种替换或者用泰勒展开式来得到。如:1−cosx∼\frac{1}{2}X^{2},理由是1−cosx=2\sin (\frac{x}{2})^{2} ∼ \frac{1}{2}X^{2}                                                                a^{x}-1 ~ xlna,理由是:a^{x}-1=e^{xlna}-1~ xlna

2、导数的四则运算法则

加减求导法则:和差的导数等于导数的和差。

乘法求导:,,由乘法可以得出:

商求导:,分母是V的平方,分子是乘积形式,符号为负。

3、反函数的求导法则

反函数的导数等于直接函数导数的倒数。如:

4、复合函数的求导法则,最为重要,一定要掌握

,等于函数对中间变量的导数乘以中间变量对自变量的导数.(链式法则)定义如下:

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guangod

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值