LIME算法:图像分类解释器(代码实现)

在上一篇博客LIME算法:模型的可解释性(代码实现)中,我整理了LIME算法的原理及在文本分类模型中的应用。在这篇笔记中,我记录了LIME算法在图像分类模型中的应用及过程中遇到的问题和解决方法。

一、算法简介

LIME算法是Marco Tulio Ribeiro2016年发表的论文《“Why Should I Trust You?” Explaining the Predictions of Any Classifier》中介绍的局部可解释性模型算法。该算法主要是用在文本类与图像类的模型中。
在这里插入图片描述
在日常测试图像分类模型时,常常会得到一些莫名其妙的预测结果。我拿我家小猫的照片做测试,得出的预测结果竟然有“纸箱、安全带”这样的分类:
在这里插入图片描述
我忍不住想知道,我家小猫到底哪部分长得像安全带?而要得到这个答案,就可以利用LIME解释器来帮助解释。

二、LIME解释器代码实现

要实现LIME解释器在图像分类模型中的应用,首先要有一个已经建模完成的图像分类模型,这里参考lime算法的GitHub实例,基于keras框架下载Google Inception net-v3深度神经网络模型。

#加载需要的包
import os
import keras
from keras.applications import inception_v3 as inc_net
from keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions
from skimage.io import imread
import matplotlib.pyplot as plt
import numpy as np
print('Notebook run using keras:', keras.__version__)

#下载Google Inception net-v3深度神经网络模型
inet_model = inc_net.InceptionV3()

对待分类图像做数据预处理

def transform_img_fn(path_list):
    out = []
    for img_path in path_list:
        img = image.load_img(img_path, target_size=(299
以下是使用LIME图像增强算法的示例代码: ``` import numpy as np import skimage.segmentation import lime from lime import lime_image # 加载图像 image = skimage.io.imread('image.jpg') # 定义解释器函数 def predict_fn(images): # 将图像数据转换为模型能够接受的格式 # 并使用模型进行预测 return model.predict(images) # 创建解释器对象并生成解释结果 explainer = lime_image.LimeImageExplainer() explanation = explainer.explain_instance(image, predict_fn, top_labels=5, hide_color=0, num_samples=1000) # 获取解释结果 temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=10, hide_rest=False) mask = skimage.segmentation.mark_boundaries(temp / 2 + 0.5, mask) # 显示图像和解释结果 skimage.io.imshow(mask) skimage.io.show() ``` 这个示例代码中,我们使用LIME图像增强算法来解释一个图像,并使用生成的解释结果来显示原始图像。在这个示例中,我们使用了skimage库来加载图像,并使用lime库来创建一个LimeImageExplainer对象,并使用其中的explain_instance()方法来生成解释结果。在生成解释结果之后,我们使用get_image_and_mask()方法来获取图像和掩码,然后使用mark_boundaries()方法来将掩码绘制在图像上。最后,我们通过skimage.io.imshow()和skimage.io.show()函数来显示图像和解释结果。 请注意,这只是一个示例代码,你需要根据你的具体需求进行修改和调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值