P1637 三元上升子序列

标签+线段树+离散化好题。

题意:给定一个长度为n的序列a,问满足a_{i}<a_{j}<a_{k}(1\leq i<j<k\leq n)的三元组(a_{i},a_{j},a_{k})的个数。

数据范围:1\leq n\leq 30000,0\leq a_{i}\leq maxlongint

首先,我们知道求满足a_{i}<a_{j}i<j的二元组的个数的线段树做法是什么。

类比 P1198 [JSOI2008]最大数 ,假设现在有一个数组tot。我们扫一遍整个序列,扫到a_{i}tot[a[i]]+=1。此时tot_{x}数组存的是在数列a中位置下标1-i中大小为x的数字的个数。那么此时便可以得到:对于a_{i+1},在a_{1}-a_{i}中比a_{i+1}小的数字的个数cnt_{i+1}=\sum_{k=1}^{a_{i+1}-1}tot_{k}

那么对于原问题,ans=\sum_{k=2}^{n} \sum_{i=1}^{k-1,a_{i}<a_{k}}cnt_{i}。这个过程利用线段树即可完成统计。

最后注意:由于a的值域过大,所以需先离散化。

Code:

#include<cstdio>
#include<iostream>
#include<algorithm>
#define ri register int
using namespace std;

const int MAXN=30020;
int n,a[MAXN];
int l[MAXN<<2],r[MAXN<<2],add[MAXN<<2],tot[MAXN];
long long sum[MAXN<<2],ans;
struct node{
    int num,pla;
}shu[MAXN];

bool cmp(node a,node b)
{
    return a.num < b.num;
}

void build(int p,int lft,int rit)
{
    l[p]=lft,r[p]=rit;
    if(l[p]==r[p])  return;
    int mid=(lft+rit)>>1;
    build(p <<1,lft,mid);
    build(p <<1|1,mid+1,rit);
}

void pushupadd(int p)
{
    add[p]=add[p <<1]+add[p <<1|1];
}

void update1(int p,int where,int k)
{
    if(l[p]==where&&r[p]==where)
    {
        add[p]+=k;
        return;
    }
    if(where<=r[p <<1])  update1(p <<1,where,k);
    if(l[p <<1|1]<=where)  update1(p <<1|1,where,k);
    pushupadd(p);
}

int query1(int p,int lft,int rit)
{
    if(lft>rit)  return 0;
    if(lft<=l[p]&&r[p]<=rit)	return add[p];
    int anstot=0;
    if(lft<=r[p <<1])  anstot=query1(p <<1,lft,rit);
    if(l[p <<1|1]<=rit)  anstot+=query1(p <<1|1,lft,rit);
    return anstot;
}

void pushup(int p)
{
    sum[p]=sum[p <<1]+sum[p <<1|1];
}

void update2(int p,int where,long long k)
{
    if(l[p]==where&&r[p]==where)
    {
        sum[p]+=k;
        return;
    }
    if(where<=r[p <<1])  update2(p <<1,where,k);
    if(l[p <<1|1]<=where)  update2(p <<1|1,where,k);
    pushup(p);
}

long long query2(int p,int lft,int rit)
{
    if(lft>rit)  return 0;
    if(lft<=l[p]&&r[p]<=rit)	return sum[p];
    long long anstot=0;
    if(lft<=r[p <<1])  anstot=query2(p <<1,lft,rit);
    if(l[p <<1|1]<=rit)  anstot+=query2(p <<1|1,lft,rit);
    return anstot;
}

int main()
{
    scanf("%d",&n);
    for(ri i=1;i<=n;i++)
    {
        scanf("%d",&shu[i].num);
        shu[i].pla=i;
    }
    sort(shu+1,shu+n+1,cmp);
    a[shu[1].pla]=1;
    for(ri i=2;i<=n;i++)
    {
        if(shu[i-1].num==shu[i].num)  a[shu[i].pla]=a[shu[i-1].pla];
        if(shu[i-1].num<shu[i].num)  a[shu[i].pla]=a[shu[i-1].pla]+1;
    }
    build(1,1,n);
    for(ri i=2;i<=n;i++)
    {
        update1(1,a[i-1],1);
        tot[i]=query1(1,1,a[i]-1);
    }
    for(ri i=2;i<=n;i++)
    {
        update2(1,a[i-1],(long long)tot[i-1]);
        ans+=query2(1,1,a[i]-1);
    }
    cout<<ans;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值