【python图像处理】图像的滤波(ImageFilter类详解)

在图像处理中,经常需要对图像进行平滑、锐化、边界增强等滤波处理。在使用PIL图像处理库时,我们通过Image类中的成员函数filter()来调用滤波函数对图像进行滤波,而滤波函数则通过ImageFilter类来定义的。

下面先直接看一个样例:

#-*- coding: UTF-8 -*-     
  
from PIL import Image
from PIL import ImageFilter

def image_filters_test():

    im = Image.open("lenna.jpg")

    #预定义的图像增强滤波器
    im_blur = im.filter(ImageFilter.BLUR)
    im_contour = im.filter(ImageFilter.CONTOUR)

    im_min = im.filter(ImageFilter.MinFilter(3))

    im.show()
    im_blur.show()
    im_contour.show()
    im_min.show()

    return



ImageFilter类中预定义了如下滤波方法:

• BLUR:模糊滤波

• CONTOUR:轮廓滤波

• DETAIL:细节滤波

• EDGE_ENHANCE:边界增强滤波

• EDGE_ENHANCE_MORE边界增强滤波(程度更深)

• EMBOSS:浮雕滤波

• FIND_EDGES:寻找边界滤波

• SMOOTH:平滑滤波

• SMOOTH_MORE:平滑滤波(程度更深)

• SHARPEN:锐化滤波

• GaussianBlur(radius=2):高斯模糊

>radius指定平滑半径。

• UnsharpMask(radius=2, percent=150, threshold=3):反锐化掩码滤波

>radius指定模糊半径;

>percent指定反锐化强度(百分比);

>threshold控制被锐化的最小亮度变化。

• Kernel(size, kernel, scale=None, offset=0):核滤波

当前版本只支持核大小为3x3和5x5的核大小,且图像格式为“L”和“RGB”的图像。

>size指定核大小(width, height);

>kernel指定核权值的序列;

>scale指定缩放因子;

>offset指定偏移量,如果使用,则将该值加到缩放后的结果上。

• RankFilter(size, rank):排序滤波

>size指定滤波核的大小

>rank指定选取排在第rank位的像素,若大小为0,则为最小值滤波;若大小为size * size / 2则为中值滤波;若大小为size * size - 1则为最大值滤波。

• MedianFilter(size=3):中值滤波

>size指定核的大小

• MinFilter(size=3):最小值滤波器

>size指定核的大小

• MaxFilter(size=3):最大值滤波器

>size指定核的大小

• ModeFilter(size=3):波形滤波器

选取核内出现频次最高的像素值作为该点像素值,仅出现一次或两次的像素将被忽略,若没有像素出现两次以上,则保留原像素值。

>size指定核的大小


上例的滤波处理结果如下




2017.05.08

发布了78 篇原创文章 · 获赞 369 · 访问量 127万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览