Ubuntu下OpenCV 2.4.3交叉编译

转自http://blog.163.com/thinki_cao/blog/static/8394487520134209235258/

软件包地址:pan.baidu.com/......

主机平台(HOST):KUbuntu12.04

目标平台(TARGET):嵌入式Linux系统 3.x内核(Xilinx ZEDBoard)
由于OpenCV需要进行视频中的运动检测与分割,自然要用到相关函数打开AVI视频.如果只使用OpenCV进行交叉编译,那么默认情况下不支持AVI格式的打开与写入,这是因为少了很多解码库与编码库,如x264,ffmpeg等,因此首先要对这些库进行一次交叉编译后,再进行OpenCV库的交叉编译才能支持AVI格式的视频,这里首先给出OpenCV交叉编译时各个库的依赖关系:
OpenCV
        |--------zlib                
        |--------jpeg
        |--------libpng
                    |--------zlib 
        |--------tiff
                    |--------zlib 
        |--------ffmpeg
                    |--------x264
                    |--------xvidcore

其中各个源码包之间的依赖关系还是有一定的讲究的,否则很容易编译通不过,这里建议下载较新的稳定版进行交叉编译,下面列出本人已经成功编译通过的源码包版本:
ffmpeg-0.10.3
tiff-4.0.3
jpeg-8d
x264-snapshot-20120528-2245-stable
libpng-1.5.14
xvidcore-1.3.2
OpenCV-2.4.3
zlib-1.2.7
环境变量如下(最好在/etc/profile中添加):
export PATH=/opt/CodeSourcery/Sourcery_CodeBench_Lite_for_Xilinx_GNU_Linux/bin:$PATH   #交叉编译工具链
export CROSS_COMPILE=arm-xilinx-linux-gnueabi-    #编译Xilinx ZEDBoard linux内核时需要的一个环境变量(根据需要设)
export ZYNQ_QT_BUILD=/zynq/qt/qt-everywhere-opensource-src-4.8.3
export ZYNQ_CV_INSTALL=/zynq/opencv/opencv-lib   #OpenCV交叉编译库的安装路径
————————————————————————————————————————————————
OpenCV-2.4.3
依赖库的配置以及注意事项如下:

(有的CFLAGS中会有一些默认选项,如果直接覆盖可能会与默认配置不太一样,大家可以先用默认的configure配置一遍查看一下默认的CFLAGS中还有哪些选项,然后加在configure的CFLAGS选项中)
zlib-1.2.7
export CC=arm-xilinx-linux-gnueabi-gcc
./configure --prefix=$ZYNQ_CV_INSTALL --shared
make
make install
注意:这里需要事先声明CC变量,zlib中没有配置--host之类的选项
(如果要开启ARM的NEON优化,需要修改Makefile中的CFLAGS,在最后加上
-mcpu=cortex-a9 -march=armv7-a -mfpu=neon -mfloat-abi=softfp)

jpeg-8d
./configure --prefix=$ZYNQ_CV_INSTALL --host=arm-xilinx-linux-gnueabi --enable-shared
make
make install
(如果要开启ARM的NEON优化,需要修改Makefile中的CFLAGS,在最后加上
-mcpu=cortex-a9 -march=armv7-a -mfpu=neon -mfloat-abi=softfp)

libpng 1.5.14
./configure --prefix=$ZYNQ_CV_INSTALL --host=arm-xilinx-linux-gnueabi --enable-arm-neon --enable-shared --with-pkgconfigdir=$ZYNQ_CV_INSTALL/lib/pkgconfig LDFLAGS=”-L$ZYNQ_CV_INSTALL/lib" CFLAGS="-I$ZYNQ_CV_INSTALL/include"
make
make install
注意:libpng编译过程中可能会用到zlib之类的库,因此我们需要添加额外的LDFLAGS和CFLAGS变量,更多的信息可以通过./configure --help进行参考
(如果要开启ARM的NEON优化,需要修改在configure中的CFLAGS最后加上
-mcpu=cortex-a9 -march=armv7-a -mfpu=neon -mfloat-abi=softfp)

x264-snapshot-20120528-2245-stable
./configure --host=arm-linux --cross-prefix=arm-xilinx-linux-gnueabi- --enable-shared --prefix=$ZYNQ_CV_INSTALL
make
make install
(如果要开启ARM的NEON优化,需要在configure最后加上
--extra-cflags="-mcpu=cortex-a9 -march=armv7-a -mfpu=neon -mfloat-abi=softfp")

xvidcore-1.3.2
cd build/generic
./configure --prefix=$ZYNQ_CV_INSTALL --host=arm-xilinx-linux-gnueabi 
make
make install
(如果要开启ARM的NEON优化,需要在当前目录下的config.status文件中的S["CFLAGS"]开头的那行最后加上
-mcpu=cortex-a9 -march=armv7-a -mfpu=neon -mfloat-abi=softfp)

tiff-4.0.3
./configure --prefix=$ZYNQ_CV_INSTALL --host=arm-xilinx-linux-gnueabi --enable-shared LDFLAGS=-L$ZYNQ_CV_INSTALL/lib CFLAGS="-I$ZYNQ_CV_INSTALL/include -g -O2 -Wall -W"  CXXFLAGS="-I$ZYNQ_CV_INSTALL/include -g -O2"
make
make install
注意:tiff编译过程中可能会用到zlib之类的库,因此我们需要添加额外的LDFLAGS和CFLAGS变量,更多的信息可以通过./configure --help进行参考
(如果要开启ARM的NEON优化,需要在configure中的CFLAGS和CXXFLAGS最后都加上
-mcpu=cortex-a9 -march=armv7-a -mfpu=neon -mfloat-abi=softfp)

ffmpeg-0.10.3
./configure --prefix=$ZYNQ_CV_INSTALL --enable-shared --disable-static --enable-gpl --enable-cross-compile --arch=arm --cpu=armv7-a --disable-stripping --target-os=linux --enable-libx264 --enable-libxvid --cc=arm-xilinx-linux-gnueabi-gcc --enable-swscale --extra-cflags=-I$ZYNQ_CV_INSTALL/include --extra-ldflags=-L$ZYNQ_CV_INSTALL/lib --disable-asm
make
make install
注意:ffmpeg编译过程中可能会用到x264,xvid,zlib等之类的库,因此我们需要添加额外的LDFLAGS和CFLAGS变量,更多的信息可以通过./configure --help进行参考,ffmpeg的编译中可能会调用arm指令集,但是在ZEDBoard上的ARM v7指令集的CortexA9核心只能支持Thumb/Thumb2,因此这里需要禁用汇编选项--disable-assembly
(如果要开启ARM的NEON优化,需要删除原来的"disable-asm"并且在configure中的CFLAGS和CXXFLAGS最后都加上
-march=armv7-a -mfpu=neon -mfloat-abi=softfp,注意这里不能加-mcpu=cortex-a9,否则编译器会报bug,
然后检查config.h 里面 HAVE_NEON 是不是有被置成 1,并且成功的话,libavcodec/arm/ 会有 *neon* 的目标文件被生成

OpenCV2.4.3交叉编译过程:
由于OpenCV从2.0以后的版本开始都是使用Cmake进行配置管理的,因此我们需要安装相关的工具(对于PC机上OpenCV的本地编译,可以参考官方网站上的 Installation in Linux) ,交叉编译的情况下我们需要安装cmake以及cmake-gui(包含在cmake-qt-gui中):

sudo apt-get install cmake cmake-qt-gui

首先解压OpenCV2.4.3:

tar xvf OpenCV-2.4.3.tar.bz2

然后进入源码目录再新建一个build文件夹并进入build文件夹目录:
  
  
cd OpenCV - 2.4 . 3
mkdir build
cd build
在当前目录下新建toolchain.cmake文档,内容如下:
###########user defined#############
set( CMAKE_SYSTEM_NAME Linux )
set( CMAKE_SYSTEM_PROCESSOR arm )
set( CMAKE_C_COMPILER arm-xilinx-linux-gnueabi-gcc )
set( CMAKE_CXX_COMPILER arm-xilinx-linux-gnueabi-g++ )
###########user defined#############
set( CMAKE_FIND_ROOT_PATH "/zynq/opencv/opencv-lib" )
set( CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER )
set( CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY )
set( CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY )
######################################
注意:最后的四行是用于交叉编译情况下依赖库查找路径以及查找模式的,它对于cmake能否找到依赖库来说非常重要
然后进行cmake的配置:

cmake -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake ../

注意:
1. cmake的配置过程会修改OpenCV源码中的内容,因此如果配置失败的话请从解压源码开始从头来过.
2. 配置过程开始之后会出现一堆的配置信息,如果出现问题请仔细参考配置信息.
3. 查找依赖库的过程中调用pkg-config工具进行查找,对应的cmake命令在OpenCV-2.4.3/cmake/OpenCVFindPkgConfig.cmake文件中,如果配置出现问题或者不能找到对应的库路径,可以在使用cmake重新配置之前在OpenCVFindPkgConfig.cmake找到#message(STATUS "  ${_varname} ... ${_pkgconfig_invoke_result}"),将#删除,在配置过程中会输出pkg-config的查找过程,这是一个很不错的查错方式
配置完成以后在当前目录下执行cmake-gui,设置好源码路径(OpenCV-2.4.3)与编译路径(OpenCV-2.4.3/build),将不要的东西全部勾掉,最后点击config之后出现如下配置信息:
(如果要开启ARM的NEON优化,需要在cmake-gui中的设置环境变量,即CMAKE_CFLAGS和CMAKE_CXXFLAGS最后都加上
-mcpu=cortex-a9 -march=armv7-a -mfpu=neon -mfloat-abi=softfp)
General configuration for OpenCV 2.4.3 =====================================
  Version control:               exported

  Platform:
    Host:                        Linux 3.2.0-37-generic-pae i686
    Target:                      Linux arm
    CMake:                       2.8.7
    CMake generator:             Unix Makefiles
    CMake build tool:            /usr/bin/make
    Configuration:               Release

  C/C++:
    Built as dynamic libs?:      YES
    C++ Compiler:                /opt/CodeSourcery/Sourcery_CodeBench_Lite_for_Xilinx_GNU_Linux/bin/arm-xilinx-linux-gnueabi-g++  (ver 4.6.1)
    C++ flags (Release):         -W -Wall -Werror=return-type -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -O3 -DNDEBUG  -DNDEBUG
    C++ flags (Debug):           -W -Wall -Werror=return-type -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -g  -O0 -DDEBUG -D_DEBUG -ggdb3
    C Compiler:                  /opt/CodeSourcery/Sourcery_CodeBench_Lite_for_Xilinx_GNU_Linux/bin/arm-xilinx-linux-gnueabi-gcc
    C flags (Release):           -W -Wall -Werror=return-type -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -O3 -DNDEBUG  -DNDEBUG
    C flags (Debug):             -W -Wall -Werror=return-type -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -g  -O0 -DDEBUG -D_DEBUG -ggdb3
    Linker flags (Release):      
    Linker flags (Debug):        
    Precompiled headers:         YES

  OpenCV modules:
    To be built:                 core imgproc flann highgui features2d calib3d ml video objdetect contrib nonfree photo legacy gpu stitching ts videostab
    Disabled:                    python world
    Disabled by dependency:      -
    Unavailable:                 androidcamera java ocl

  GUI: 
    QT 4.x:                      NO
    GTK+ 2.x:                    NO
    GThread :                    NO
    GtkGlExt:                    NO
    OpenGL support:              NO

  Media I/O: 
    ZLib:                        zlib (ver 1.2.7)
    JPEG:                        libjpeg (ver 62)
    PNG:                         build (ver 1.5.12)
    TIFF:                        build (ver 42 - 4.0.2)
    JPEG 2000:                   build (ver 1.900.1)
    OpenEXR:                     build (ver 1.7.1)

  Video I/O:
    DC1394 1.x:                  NO
    DC1394 2.x:                  NO
    FFMPEG:                      YES
      codec:                     YES (ver 53.61.100)
      format:                    YES (ver 53.32.100)
      util:                      YES (ver 51.35.100)
      swscale:                   YES (ver 2.1.100)
      gentoo-style:              YES
    GStreamer:                   NO
    OpenNI:                      NO
    OpenNI PrimeSensor Modules:  NO
    PvAPI:                       NO
    GigEVisionSDK:               NO
    UniCap:                      NO
    UniCap ucil:                 NO
    V4L/V4L2:                    NO/YES
    XIMEA:                       NO
    Xine:                        NO

  Other third-party libraries:
    Use TBB:                     NO
    Use Cuda:                    NO
    Use OpenCL:                  NO
    Use Eigen:                   NO

  Python:
    Interpreter:                 /usr/bin/python (ver 2.7.3)

  Tests and samples:
    Tests:                       NO
    Performance tests:           NO
    Examples:                    NO

  Install path:                  /zynq/opencv/OpenCV-2.4.3-cross/OpenCV-2.4.3/build/install

  cvconfig.h is in:              /zynq/opencv/OpenCV-2.4.3-cross/OpenCV-2.4.3/build
-----------------------------------------------------------------

Configuring done
最后点击generate,生成makefile,之后就是我们熟悉的:

make

make install

PS:不要忘了在cmake-gui中配置安装路径,对应的环境变量是CMAKE_INSTALL_PREFIX
到此OpenCV-2.4.3的编译与安装就已经完成了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值