最小二乘法

最小二乘法是历史上非常有名的用于解决回归最值的方法,其可以理解为回归问题平方损失函数的解析解

假设数据集为 ( X , y ) (\boldsymbol X,\boldsymbol y) (X,y),线性模型系数为 W \boldsymbol W W,则对应的平方损失函数为: L ( X , y ; W ) = ( y − X W ) T ( y − X W ) L(\boldsymbol X,\boldsymbol y;\boldsymbol W) =(\boldsymbol y-\boldsymbol {XW})^T(\boldsymbol y-\boldsymbol {XW}) L(X,y;W)=(yXW)T(yXW)将上式对 W \boldsymbol W W求偏导,并另值为0,则: ∂ L ∂ W = − X T ( y − X W ) = 0 \frac{\partial L}{\partial \boldsymbol W}=-\boldsymbol X^T(\boldsymbol y-\boldsymbol {XW})=0 WL=XT(yXW)=0可得: W = ( X T X ) − 1 X T y \boldsymbol W=(\boldsymbol {X^TX})^{-1}\boldsymbol {X^Ty} W=(XTX)1XTy上式即为最小二乘法的矩阵计算公式。相较于梯度下降法、牛顿法等梯度下降方法,最小二乘法可以一次性求出线性模型的系数,但其缺点也非常明显:
(1)若数据规模大,则整个矩阵运算的存储量和计算量均很大;
(2)当数据特征间存在多重共线性时,数据协方差矩阵 X T X \boldsymbol {X^TX} XTX并不可逆,这会导致最小二乘法失效。

解决上述多重共线性问题的常见方法有三种:
(1)特征筛选或数据降维。基于统计学知识,对特征的相关性进行排查;或者直接采用PCA等降维算法生成独立的特征。
(2)向前逐步回归,可看做一种基于模型的向前特征选择。
(3)对线性模型进行改造,使其能够使用应对多重共线性的场合。

在上述第(3)种方案中,岭回归(Ridge Regression)通过引入L2惩罚项,实现对协方差矩阵的调整,尽量避免了其不可逆的问题。
此时,损失函数为 L ( X , y ; W ) = ( y − X W ) T ( y − X W ) + α ∣ ∣ W ∣ ∣ 2 2 L(\boldsymbol X,\boldsymbol y;\boldsymbol W) =(\boldsymbol y-\boldsymbol {XW})^T(\boldsymbol y-\boldsymbol {XW})+\alpha||\boldsymbol W||_2^2 L(X,y;W)=(yXW)T(yXW)+αW22式中 α \alpha α为惩罚因子,上式对 W \boldsymbol W W求偏导,可得: ∂ L ∂ W = − X T ( y − X W ) + 2 α W = 0 \frac{\partial L}{\partial \boldsymbol W}=-\boldsymbol X^T(\boldsymbol y-\boldsymbol {XW})+2\alpha\boldsymbol W=0 WL=XT(yXW)+2αW=0从而,可得: W = ( X T X + 2 α I ) − 1 X T y \boldsymbol W=(\boldsymbol {X^TX+2\alpha\boldsymbol I})^{-1}\boldsymbol {X^Ty} W=(XTX+2αI)1XTy上式中,逆矩阵内的项在决大多数情况下正定。即使存在行列式为0的情况,也可通过适当调整 α \alpha α值进行回避。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值