二分搜索及其问题拓展

二分搜索是适用于有序数组的高效搜索方式,本文先介绍二分搜索的递归和非递归形式,然后将其拓展到类似问题。

1. 二分搜索的基本实现
1.1 递归实现
def binarySearch(array, num):
    """
    采用递归的算法: 这种递归不构造新的数组,只对指针进行递归
    :param array:
    :param num:
    :return:
    """
    if not array:
        return False
    low, high = 0, len(array)-1
    return __binarySearch(array, num, low, high)


def __binarySearch(array, num, low, high):
    if low > high:
        return False

    mid = low + (high - low) // 2
    if array[mid] == num:
        return True

    elif array[mid] > num:
        return __binarySearch(array, num, low, mid-1)

    else:
        return __binarySearch(array, num, mid + 1, high)
1.2 非递归实现

def binarySearch(array, num):
    """
    采用双指针的方式
    :param array:
    :param num:
    :return:
    """
    low, high = 0, len(array) - 1
    while low <= high:
        mid = low + (high-low)//2    # 防止溢出
        # mid = (low + high)//2
        if array[mid] == num:
            return True
        elif array[mid] < num:
            low = mid + 1
        else:
            high = mid - 1
    return False

无论是采用递归还是非递归的形式,二分法的关键注意点包括:
(1)确定问题缩小的方向和具体边界。即根据mid值,将问题规模往左半区间还是右半区间缩小;边界是开区间还是闭区间;
(2)求mid值时应注意防止数值溢出,在偶数情况下mid值可能与原low值相重复。

2. 二分搜索的问题拓展

二分法的应用场合很多,在采用二分法前需要确定问题确实可以通过这种方式进行缩减和区间确定。除了之前介绍的旋转数组的搜索问题,这里再简单介绍下二分法的其他拓展,并同时给出递归和非递归的求解。

2.1 边界范围问题

【问题】求非下降数组的上界和下界,如[1,3,5,7,8,8,8,8,9,10]中8的下界索引为4,上界索引为7,若无返回-1。、
【思路】通过二分法缩小问题规模,当mid值等于目标值,如果mid位为数组首位或者mid-1处的值小于则可确定此时mid值为下界,否则根据mid值与目标值的大小关系进行问题二分。上界搜索的原理与之类似。

  • 递归方法

def lowerBoundary(array, num, lo, hi):
    """
    用递归的方式求解下界
    :param array: 数组
    :param num: target值
    :param lo: left指针
    :param hi: right指针
    :return:
    """
    if lo > hi:
        return -1

    mid = lo + (hi - lo)//2
    if array[mid] == num and (mid==0 or array[mid-1] < num):
        return mid

    elif array[mid] >= num:
        return lowerBoundary(array, num, lo, mid - 1)

    else:
        return lowerBoundary(array, num, mid + 1, hi)

def upperBoundary(array, num, lo, hi):
    """
    递归方式求解upperboundary
    :param array:
    :param num:
    :param lo: left指针
    :param hi: right指针
    :return:
    """
    if lo > hi:
        return -1

    mid = lo + (hi - lo)//2
    if array[mid] == num and (mid == len(array)-1 or array[mid+1] > num):
        return mid

    elif array[mid] <= num:
        return upperBoundary(array, num, mid+1, hi)

    else:
        return upperBoundary(array, num, lo, mid-1)
  • 非递归方法
def lowerBoundary(array, num):
    """
    用二分遍历的方式进行搜索上界
    :param array:
    :param num:
    :return:
    """
    lo, hi = 0, len(array)-1
    while lo <= hi:
        mid = lo + (hi - lo)//2
        if array[mid] == num and (mid==0 or array[mid-1]<num):
            return mid
        elif array[mid] >= num:
            hi = mid - 1
        else:
            lo = mid + 1
    return -1

def upperBoundary(array, num):
    """
    二分搜索的方式进行遍历
    :param array:
    :param num:
    :return:
    """
    lo, hi = 0, len(array) - 1
    while lo <= hi:
        mid = lo + (hi - lo)//2
        if array[mid] == num and (mid == len(array)-1 or array[mid+1]> num):
            return mid
        elif array[mid] <= num:
            lo = mid + 1
        else:
            hi = mid - 1
    return -1
2.2 模糊边界问题

【问题】求数组中最接近于target值的小于值或大于值。如[1,3,5,7,8,8,8,8,9,10]中8的最接近的小于值为7, 最接近的大于值为9,若没有返回-1
【思路】同样求得mid值,若mid值小于目标值且mid位处于数组末尾或者mid+1值大于等于目标值时,可确定为最接近的小于值。否则,需要 根据mid位值与目标值的大小关系进行二分搜索。对于最接近的大于值的求解,思路与之类似。

  • 递归方法
def nearestSmallerValue(array, num, lo, hi):
    """
    递归方式
    :param array:
    :param num:
    :param lo:
    :param hi:
    :return:
    """

    if lo > hi:
        return -1

    mid = lo + (hi - lo)//2

    if array[mid] < num and (mid == len(array)-1 or array[mid+1] >= num):
        return array[mid]

    elif array[mid] < num:
        return nearestSmallerValue(array, num, mid+1, hi)

    else:
        return nearestSmallerValue(array, num, lo, mid-1)

def nearestBiggerValue(array, num, lo, hi):
    """
    递归方式搜索最接近目标的大值
    :param array:
    :param num:
    :param lo:
    :param hi:
    :return:
    """
    if lo > hi:
        return -1

    mid = lo + (hi - lo)//2
    if array[mid] > num and (mid==0 or array[mid-1] <= num):
        return array[mid]

    elif array[mid] > num:
        return nearestBiggerValue(array, num, lo, mid-1)

    else:
        return nearestBiggerValue(array, num, mid+1, hi)
  • 非递归方式
def nearestSamllerValue(array, num):
    """
    二分遍历方式
    :param array:
    :param num:
    :return:
    """
    lo, hi = 0, len(array)-1
    while lo <= hi:
        mid = lo + (hi - lo)//2
        if array[mid] < num and (mid==len(array)-1 or array[mid+1] >= num):
            return array[mid]
        elif array[mid] < num:
            lo = mid + 1
        else:
            hi = mid - 1
    return -1

def nearestBiggerValue(array, num):
    """
    采用二分搜索的遍历方法进行寻值
    :param array:
    :param num:
    :return:
    """
    lo, hi = 0, len(array)-1
    while lo <= hi:
        mid = lo + (hi - lo)//2
        if array[mid] > num and (mid==0 or array[mid-1] <= num):
            return array[mid]
        elif array[mid] > num:
            hi = mid - 1
        else:
            lo = mid + 1
    return -1

由上面两个例子不难看出,利用二分搜索进行解题的关键在于确定问题分解方向和边界情况。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值