鲜花数据集实验结果总结

从read_split_data中得到:训练数据集,验证数据集,训练标签,验证标签。的所有的具体详细路径

数据集位置:https://download.csdn.net/download/guoguozgw/87437634

import os
#一种轻量级的数据交换格式,
import json
#文件读/写操作
import pickle
import random
import matplotlib.pyplot as plt
def read_split_data(root:str,val_rate:float = 0.2):
    random.seed(0)#保证随机结果可重复出现
    assert os.path.exists(root),'dataset root:{} does not exist.'.format(root)

    #遍历文件夹,一个文件夹对应一个类别
    flower_class = [cla for cla in os.listdir(root) if os.path.isdir(os.path.join(root,cla))]
    #排序,保证顺序一致
    flower_class.sort()
    #生成类别名称以及对应的数字索引,将数据转换为字典的类型。将标签分好类之后,其类别是key,对应的唯一值是value
    class_indices = dict((k,v) for v,k in enumerate(flower_class))
    #将数据编写成json文件
    json_str = json.dumps(class_indices,indent=4)
    with open('json_str','w') as json_file:
        json_file.write(json_str)

    train_images_path = [] #存储训练集的所有图片路径
    train_images_label = [] #存储训练集所有图片的标签
    val_images_path = [] #存储验证机所有图片的路径
    val_images_label = [] #存储验证机所有图片的标签
    every_class_num = [] #存储每个类别的样本总数

    supported = [".jpg", ".JPG", ".png", ".PNG"]  # 支持的文件后缀类型
    #遍历每一个文件夹下的文件
    for cla in flower_class:
        cla_path = os.path.join(root,cla)
        #遍历获取supported支持的所有文件路径,得到所有图片的路径地址。针对的是某一个类别。
        images = [os.path.join(root,cla,i) for i in os.listdir(cla_path) if os.path.splitext(i)[-1] in supported]
        #获取该类别对应的索引,此时对应就是数字了。对应的只是一个数字
        image_class = class_indices[cla]
        #记录该类别的样本数量
        every_class_num.append(len(images))
        #按比例随机采样验证样本,按照0.2的比例来作为测试集。
        val_path = random.sample(images,k=int(len(images)*val_rate))

        for img_path in images:
            #如果该路径在采样的验证集样本中则存入验证集。否则的话存入到训练集当中。其中label和image是相互对应的。
            if img_path in val_path:
                val_images_path.append(img_path)
                val_images_label.append(image_class)
            else:
                train_images_path.append(img_path)
                train_images_label.append(image_class)

    print('该数据集一共有{}多张图片。'.format(sum(every_class_num)))
    print('一共有{}张图片是训练集'.format(len(train_images_path)))
    print('一共有{}张图片是验证集'.format(len(val_images_path)))
    #输出每一个类别对应的图片个数
    for i in every_class_num:
        print(i)

    plot_image = False
    if plot_image:
        #绘制每一种类别个数柱状图
        plt.bar(range(len(flower_class)),every_class_num,align='center')
        #将横坐标0,1,2,3,4替换成相应类别的名称
        plt.xticks(range(len(flower_class)),flower_class)
        #在柱状图上添加数值标签
        for i,v in enumerate(every_class_num):
            plt.text(x=i,y=v+5,s=str(v),ha='center')
        #设置x坐标
        plt.xlabel('image class')
        plt.ylabel('number of images')
        #
        plt.title('flower class distribution')
        plt.show()

    return train_images_path,train_images_label,val_images_path,val_images_label
if __name__ == '__main__':
    root = '../11Flowers_Predict/flower_photos'
    read_split_data(root)

最后得到的数据信息分别如此,代码中的路径需要进行更换(替换为自己的路径)。
请添加图片描述

从写Dataset类

from PIL import Image
import torch
from torch.utils.data import Dataset

class MyDataSet(Dataset):
    '''
    自定义数据集
    '''
    def __init__(self,images_path:list,images_classes:list,transform = None):
        super(MyDataSet, self).__init__()
        self.images_path = images_path
        self.images_classes = images_classes
        self.transform = transform
    def __len__(self):
        return len(self.images_path)

    def __getitem__(self, item):
        img = Image.open(self.images_path[item])
        #RGB为彩色图片,L为灰度图片
        if img.mode != 'RGB':
            #直接在这里终止程序的运行
            raise ValueError('image :{} is not RGB mode.'.format(self.images_path[item]))
        label = self.images_classes[item]

        if self.transform is not None:
            img = self.transform(img)

        return img , label

对数据集的预处理部分

import os
import torch
from torchvision import transforms
from utils import read_split_data
from my_dataset import MyDataSet
#数据集所在的位置
root = '../11Flowers_Predict/flower_photos'
def main():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('using {} device.'.format(device))
    #接下来这一行是对数据的读取
    train_images_path,train_images_label,val_images_path,val_images_label = read_split_data(root)

    #设置transform,compose立main必须是列表
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
    train_data_set = MyDataSet(images_path=train_images_path,
                               images_classes=train_images_label,
                               transform=data_transform['train'])
    val_data_set = MyDataSet(images_path=val_images_path,
                             images_classes=val_images_label,
                             transform=data_transform['val'])
    batch_size = 32
    #number of workers
    #nw = min([os.cpu_count() , batch_size if batch_size>1 else 0,8])
    #print('Using {} dataloader workers'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_data_set,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers = 0
                                               )
    val_loader = torch.utils.data.DataLoader(val_data_set,
                                             batch_size=batch_size,
                                             shuffle=True,
                                             num_workers = 0)

    for step,data in enumerate(train_loader):
        images,labels = data
        #print(images.shape)
        #print(labels)
        #print(labels.shape)
    return train_loader,val_loader
if __name__ == '__main__':
    main()

开始对数据集进行训练

import torch
from torch import nn
import torchvision
from torchvision import transforms,models
from tqdm import tqdm
from main import *
import time
HP = {
    'epochs':25,
    'batch_size':32,
    'learning_rate':1e-3,
    'momentum':0.9,
    'test_size':0.05,
    'seed':1
}

#创建一个残差网络34层结果,使用预训练参数
model = models.resnet34(pretrained=True)
model.fc = torch.nn.Sequential(
    torch.nn.Dropout(0.1),
    torch.nn.Linear(model.fc.in_features,5)
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cuda':
    torch.backends.cudnn.benchmark = True
print(f'using {device} device')
#将模型添加到gpu当中
model = model.to(device)

#分类问题使用交叉熵函数损失
criterion = torch.nn.CrossEntropyLoss()
#优化器使用SGD随机梯度下降法
optimizer = torch.optim.SGD(model.parameters(),lr=HP['learning_rate'],momentum=HP['momentum'])

train_loader,val_loader = main()

def train(model,criterion,optimizer,train_loader,val_loader):
    #设置总的训练损失和验证损失,以及训练准确度和验证准确度。
    total_train_loss = 0
    total_val_loss = 0
    total_train_accracy = 0
    total_val_accracy = 0

    model.train()#设置为训练模式
    loop = tqdm(enumerate(train_loader),total=len(train_loader))
    loop.set_description(f'training')
    for step,data in loop:
        images,labels = data
        #将数据添加到GPU当中
        images = images.to(device)
        labels = labels.to(device)
        output = model(images)
        #单个损失
        loss = criterion(output,labels)
        #计算准确率
        accracy = (output.argmax(1)==labels).sum()
        #将所有的损失进行相加
        total_train_loss += loss.item()
        #将所有正确的全部相加起来
        total_train_accracy += accracy
        #开始进行层数更新
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    model.eval()
    loop_val = tqdm(enumerate(val_loader),total=len(val_loader))
    loop_val.set_description(f'valuing')
    for step,data in loop_val:
        images,labels = data
        images = images.to(device)
        labels = labels.to(device)

        output = model(images)
        loss = criterion(output,labels)
        accracy_val = (output.argmax(1)==labels).sum()
        total_val_loss += loss.item()
        total_val_accracy += accracy_val

    train_acc = total_train_accracy/(2939)
    val_acc = total_val_accracy/(731)
    train_loss = total_train_loss/(2939)
    val_loss = total_val_loss/(731)

    print(f'训练集损失率: {train_loss:.4f} 训练集准确率: {train_acc:.4f}')
    print(f'验证集损失率: {val_loss:.4f} 验证集准确率: {val_acc:.4f}')

if __name__ == '__main__':
    time_start = time.time()
    for i in  range(HP['epochs']):
        print(f"Epoch {i+1}/{HP['epochs']}")
        train(model, criterion, optimizer, train_loader, val_loader)

    time_end = time.time()
    print(time_end-time_start)

json_str

{
    "daisy": 0,
    "dandelion": 1,
    "roses": 2,
    "sunflowers": 3,
    "tulips": 4
}

训练结束之后,可以得出来训练出来的结果。

总结部分:

一:针对全部是目录,且目录里面是已经分好类的数据集,且数据没有分成训练集和测试集
1:函数参数设置为:路径,划分的概率
2:设置一定的随机结果
3:判断该路径是否存在,使用assert
4:根据传过来的root,来判断当前路径下所有的文件夹,如果是文件夹将其写入到列表当中
5:同时这个列表也是所有的类别,将该列表进行排序
6:使用enumerate来使其成为字典,其中key对应的是分类,value对应的是数值
7:(可以选择)使用json可以将其写入到文件当中
8:创建训练集图片路径,训练集标签路径,验证集图片路径,验证集标签路径,每个类别的数目,都是列表形式
9:开始对文件进行遍历,然后将其存放到上面的集合当中
10:以根据类别以及root使用join将其连接起来。根据类别来进行循环,然后进行拼接
11:接这这个类别循环的时候,使用随机数来将其划分验证数据集和训练数据集

二:如果数据已经分好训练集和测试集的情况下,如果存在csv的文件情况下,可以使用pandas来进行数据处理
(shuffle函数是sklearn utils里面的类),
(对csv文件读取,主要使用到的是pandas库)
1:对读取到的csv文件可以首先使用head查看前几个数据
2:使用sklearn里面的shuffle方法来进行打乱顺序
3:使用pandas里面的factorize对标签进行数据化显示(把复杂计算分解为基本运算),其返回值为元祖
4:使用unique返回的是列表,将标签封装成列表
5:再将其相互对应封装为字典:key是类别,value是数字
6:使用sklearn中的train_test_split方法来对数据集进行划分,传入参数为(DataFrame,比例)
7:使用value_count来对标签进行计数

对DataSet的重写:
1:主要是实现其中的三个方法,init,getitem,len
2:init主要是接受参数,路径,类别,以及transforms,在这里一定要吧image处理到对应的每一张图片的身上
3:返回的是image格式的图片,以及一个标签数字

部分测试代码

#
import os


def main(root:int,images_class: list,transform = None):
    print('root:',root)
    print('int:', int)
    print('images_class:', images_class)
    print('list:', list)

def read_split_data(root:str,val_rate:float = 0.2):
    print('root:', root)
    print('str:', str)
    print('val_rate:', val_rate)
    print('float:', float)


root = '../11Flowers_Predict/flower_photos'
#遍历文件夹
'''
os.listdir是展示当前所在层的所有文件
os.isdir判断当前这个文件是否属于文件夹
os.path.join()将两个字符串进行连接中间用/
os.path.splittext()返回的是一个元祖
'''
flowers_classes = [cla for cla in os.listdir(root) if os.path.isdir(os.path.join(root,cla))]
print(flowers_classes)
flowers_classes_copy = flowers_classes.copy()
flowers_classes.sort()
print(os.path.isdir('../11Flowers_Predict/flower_photos'))
print(os.path.join(root,'roses'))
print(flowers_classes)
class_ind = dict((k, v) for v, k in enumerate(flowers_classes))
for v,k in enumerate(flowers_classes):
    print('此时标号{},对应的类别是{}.'.format(v,k))
for v,k in class_ind.items():
    print(v,k)
import json
json_str = json.dumps(class_ind,indent=2)
print(json_str)
with open('json_str','w') as json_file:
    json_file.write(json_str)

AA = os.path.splitext('123.jpg')
print(type(os.path.splitext('123.jpg')))
supported = [".jpg", ".JPG", ".png", ".PNG"]  # 支持的文件后缀类型
print(AA[-1] in supported)
list = [1,2,3,4]
#main(root,list)
for cla in flowers_classes:
    image_class = class_ind[cla]

print(image_class)
import matplotlib.pyplot as plt
every_class_num = [633,898,641,699,799]
plt.bar(flowers_classes,every_class_num,align='center')
#   这个东西就是用来替换的
#plt.xticks(range(len(flowers_classes)),[10,11,12,13,14])
for i,v in enumerate(every_class_num):
    plt.text(x=i,y=v,s=str(v))
plt.show()
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 根据我了解到的信息,flower102的鲜花分类数据主要包括以下内容: 首先,鲜花分类数据可能包括鲜花的科属分类信息。科属分类是根据鲜花的形态、特征以及生物分类学原理而进行的分类。鲜花科属分类数据可以帮助我们更好地了解鲜花的分类关系和演化历史。 其次,鲜花分类数据可能包括鲜花的品种分类信息。品种分类是根据鲜花的花色、花形、花朵大小等特征进行的分类。鲜花品种分类数据可以让我们更方便地查找并辨识不同品种的鲜花。 此外,鲜花分类数据可能还包括鲜花的产地分类信息。产地分类是根据鲜花的原产地、生长环境以及适宜种植条件等因素进行的分类。鲜花产地分类数据可以帮助我们更好地了解鲜花的栽培环境和适应性。 最后,鲜花分类数据可能包括鲜花的花语分类信息。花语分类是根据鲜花所代表的含义、象征以及寓意等方面进行的分类。鲜花花语分类数据可以让我们更好地理解鲜花所传递的情感和寓意。 综上所述,flower102的鲜花分类数据可能包括科属分类、品种分类、产地分类以及花语分类等信息。这些分类数据可以帮助我们更好地了解鲜花的科学分类、品种特征、产地环境以及情感寓意。 ### 回答2: flower102的鲜花分类数据如下: 1. 科属:花卉分类数据按照植物的科和属进行分类。flower102的鲜花分类数据中包含了不同种类的花卉,并按照它们所属的科和属来进行归类,以便于更好地管理和研究。 2. 特征:鲜花分类数据还包含了各种花卉的特征信息。这些特征信息可能包括花的颜色、花瓣的形状、花的大小、花香的强度等。通过对这些特征进行分析,可以进一步了解花卉的品种和特点。 3. 分布地区:flower102的鲜花分类数据中可能还包含了这些花卉的分布地区信息。花卉的生长环境和地理分布对其生长周期和品质有着重要的影响。通过分析这些地区信息,可以更好地了解花卉的栽培和种植条件。 4. 用途:鲜花分类数据中也会包含花卉的用途信息。有些花卉用于美化环境,例如用于盆景或花坛中;有些花卉用于食用,例如玫瑰花瓣可以用于制作花茶或糕点;还有一些花卉用于药物或香料的提取等。了解花卉的用途信息可以帮助人们更好地利用它们。 通过对flower102的鲜花分类数据的分析和研究,人们能够更好地了解各类花卉的分类、特征、分布地区和用途,从而更好地实现花卉的栽培、种植和利用。 ### 回答3: flower102的鲜花分类数据包括以下几个方面: 首先,鲜花的科属分类。根据鲜花的形态特征、花朵结构和植物属性,flower102将鲜花进行科属分类,以方便对鲜花进行系统性的研究和了解。例如,玫瑰属的鲜花被归类为Rosaceae科,玫瑰属下的各个品种则具有特定的分类。 其次,鲜花的品种分类。鲜花有许多不同的品种,每一种品种都有其独特的形态特征和生长习性。flower102对鲜花进行了品种分类,以帮助人们更好地认识和辨别不同品种的鲜花。这样的分类有助于人们选择适合自己需求的鲜花,也方便进行专业的鲜花交流。 第三,鲜花的花语分类。每一种鲜花都有其独特的花语,即通过花朵的颜色、形状、花香等表达出的特定含义和情感。flower102根据鲜花的花语将其进行分类,以便人们了解鲜花背后蕴含的情感和寓意。这对于送花者来说,可以更加准确地表达自己的心意,也让收花人更好地理解和感受花的美。 最后,鲜花的产地分类。不同地区的鲜花生长环境和气候条件会影响其生长状态和品质。flower102对鲜花进行了产地分类,以便人们可以根据自己的需求选择合适的产地的鲜花。例如,荷兰的郁金香、中国的牡丹等都是以其独特的产地特色而闻名的。 总的来说,flower102的鲜花分类数据为人们提供了便捷和系统的鲜花信息,方便人们进行选择、研究和了解鲜花的科属、品种、花语和产地信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值