深度学习:可视化-结果loss acc可视化及测试数据显示

该博客详细介绍了在深度学习模型训练过程中如何进行损失和准确率的可视化,包括交通指示牌识别案例中利用history数组记录训练历史,以及绘制loss和accuracy曲线的方法。此外,还展示了测试结果的可视化,如猫狗分类模型的预测结果,并讲解了如何保存和生成GAN模型的训练损失曲线及真实与生成图片的对比。
摘要由CSDN通过智能技术生成

1.可视化train,test的loss acc

1.1 案例:交通指示牌识别案例-history数组

代码地址:E:\项目例程\猫狗分类\迁移学习\猫狗_resnet18_2 \猫狗分类_迁移学习可视化

  1. 导入库
 from collections import defaultdict
  1. 训练函数中构建一个默认value为list的字典
history = defaultdict(list)  # 构建一个默认value为list的字典
  1. 训练函数中保存train_loss,train_acc,test_loss,test_acc结果
history['train_acc'].append(train_accuracy)
        history['train_loss'].append(train_loss)
        history['val_acc'].append(val_accuracy)
        history['val_loss'].append(val_loss)
  1. 训练函数返回
return model, history
  1. 训练模型调用时
# 调用训练函数训练
model_conv, history = train_model(
    model_conv,
    criterion,
    optimizer_conv,
    exp_lr_scheduler,
    num_epochs=30
)
  1. 绘制函数 两张图,每个图两个曲线,写法固定
    注意:若运行不出图,则加plt.show()
# 绘制 loss, acc  写法固定:两张表
def plot_training_history(history):
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 6))
    ax1.plot(history['train_loss'], label='train loss')
    ax1.plot(history['val_loss'], label='val loss')

    ax1.set_ylim([-0.05, 1.05])
    ax1.legend()
    ax1.set_ylabel('Loss')
    ax1.set_xlabel('Epoch')

    ax2.plot(history['train_acc'], label='train acc')
    ax2.plot(history['val_acc'], label='val acc'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值