[机器学习] 手撕XGBoost超参数

XGBoost版本: 1.4.2

首先,对于不同的任务,XGBoost有不同的超参数以及默认值。可以使用get_params()函数将当前模型使用的超参数打印出来:

import xgboost as xgb

params = {'n_estimators': 4,
          'max_depth': 3}
model = xgb.XGBRegressor(**params)
model.fit(X, y)

## 输出超参数
print(model.get_params())
{'objective': 'reg:squarederror',
 'base_score': 0.5,
 'booster': 'gbtree',
 'colsample_bylevel': 1,
 'colsample_bynode': 1,
 'colsample_bytree': 1,
 'gamma': 0,
 'gpu_id': -1,
 'importance_type': 'gain',
 'interaction_constraints': '',
 'learning_rate': 0.300000012,
 'max_delta_step': 0,
 'max_depth': 6,
 'min_child_weight': 1,
 'missing': nan,
 'monotone_constraints': '()',
 'n_estimators': 100,
 'n_jobs': 12,
 'num_parallel_tree': 1,
 'random_state': 0,
 'reg_alpha': 0,
 'reg_lambda': 1,
 'scale_pos_weight': 1,
 'subsample': 1,
 'tree_method': 'exact',
 'validate_parameters': 1,
 'verbosity': None}

n_estimators:使用多少棵树来拟合,也可以理解为多少次迭代。默认100;
learning_rate:学习率,每棵树的预测结果都要乘以这个学习率,默认0.3;

树相关参数:
max_depth:每一棵树最大深度,默认6;
min_child_weight:可以理解为叶子节点最小样本数,默认1;
gamma:叶节点上进行进一步分裂所需的最小"损失减少"。默认0;

抽样:
subsample:训练集抽样比例,每次拟合一棵树之前,都会进行该抽样步骤。默认1,取值范围(0, 1]

列抽样:
colsample_bytree:每次拟合一棵树之前,决定使用多少个特征。
colsample_bylevel:每层树节点,可以使用多少个特征。
colsample_bynode:每个节点分裂之前,决定使用多少个特征。
这三个参数默认都是1,取值范围(0, 1],列抽样也可以理解为特征抽样,注意这三个参数是同时作用的,比如训练集总共有64个特征,参数{‘colsample_bytree’:0.5, ‘colsample_bylevel’:0.5, ‘colsample_bynode’:0.5},则每次拟合一棵树之前,在64个特征中随机抽取其中32个特征,然后在树的每一层,在32个特征中随机抽取16个特征,然后每次节点分裂,从16个特征中随机抽取8个特征。

树方法:
tree_method:默认是auto,会自动选择最保守的方式。这个是决定训练速度的关键超参数。一般有三种树方法:exact(精确方法),approx(近似方法),hist(直方图方法),其中hist就是LightGBM中的直方图方法,速度最快,approx速度次之,exact最慢。

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
XGBoost是一种用于机器学习的强大算法,它可以在分类和回归任务中获得很好的性能。但是,为了达到最佳性能,需要对其超参数进行调整。 以下是XGBoost中需要调整的一些重要超参数: 1. n_estimators:决定树的数量,也就是模型中的基本学习者数量。 2. max_depth:树的最大深度,过高的深度可能导致过度拟合。 3. learning_rate:控制每个基本学习器的权重更新步长。 4. subsample:每次训练模型时用于构建树的样本比例。 5. colsample_bytree:每次训练模型时用于构建树的特征比例。 6. gamma:控制当树分裂时,节点的最小损失减少量。 7. reg_alpha:L1正则化参数,用于控制模型的复杂度。 8. reg_lambda:L2正则化参数,用于控制模型的复杂度。 下面是一个简单的XGBoost参数调优示例: ```python import xgboost as xgb from sklearn.datasets import load_digits from sklearn.model_selection import GridSearchCV # 加载数据集 digits = load_digits() X, y = digits.data, digits.target # 定义参数范围 param_grid = {'n_estimators': [50, 100, 150], 'max_depth': [2, 3, 4], 'learning_rate': [0.01, 0.1, 0.5], 'subsample': [0.6, 0.8, 1.0], 'colsample_bytree': [0.6, 0.8, 1.0], 'gamma': [0, 0.1, 0.2], 'reg_alpha': [0, 0.1, 1], 'reg_lambda': [0, 0.1, 1]} # 定义分类器 xgb_model = xgb.XGBClassifier(objective='multi:softmax', num_class=10) # 定义网格搜索 grid_search = GridSearchCV(estimator=xgb_model, param_grid=param_grid, cv=5, n_jobs=-1) # 进行参数调优 grid_search.fit(X, y) # 输出最佳参数 print("Best parameters found: ", grid_search.best_params_) ``` 在上面的代码中,我们使用了网格搜索来寻找最佳超参数。我们定义了一个参数范围字典,包含了所有需要调整的超参数及其可能的值。然后,我们定义了一个XGBoost分类器,并将其作为估计器传递给网格搜索。最后,我们调用fit()方法来运行网格搜索,找到最佳参数组合。 总的来说,XGBoost是一种非常强大的机器学习算法,但是需要调整一些重要的超参数才能实现最佳性能。通过调整这些超参数,可以使XGBoost在分类和回归任务中获得更好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

手撕机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值