XGBoost的参数空间与超参数优化

目录

1. 确定XGBoost的参数空间

2. 基于TEP对XGBoost进行优化


1. 确定XGBoost的参数空间

对任意集成算法进行超参数优化之前,我们需要明确两个基本事实:①不同参数对算法结果的影响力大小;②确定用于搜索的参数空间。对XGBoost来说,各个参数对算法的影响排列大致如下:

影响力参数
⭐⭐⭐⭐⭐
几乎总是具有巨大影响力
num_boost_round(整体学习能力)
eta(整体学习速率)
⭐⭐⭐⭐
大部分时候具有影响力
booster(整体学习能力)
colsample_by*(随机性)
gamma(结构风险 + 精剪枝)
lambda(结构风险 + 间接剪枝)
min_child_weight(精剪枝)
⭐⭐
可能有大影响力
大部分时候影响力不明显
max_depth(粗剪枝)
alpha(结构风险 + 精剪枝)
subsamples(随机性)
objective(整体学习能力)
scale_pos_weight(样本不均衡)

当数据量足够大时,几乎无影响
seed
base_score(初始化)

比起其他树的集成算法,XGBoost有大量通过影响建树过程而影响整体模型的参数(比如gammalambda等)。这些参数以较为复杂的方式共同作用、影响模型的最终结果,因此他们的影响力不是线性的,也不总是能在调参过程中明显地展露出来,但调节这些参数大多数时候都能对模型有影响,因此大部分与结构风险相关的参数都被评为4星参数了。相对的,对XGBoost来说总是具有巨大影响力的参数就只有迭代次数与学习率了。

在上述影响力排名当中,需要特别说明以下几点:

  1. 在随机森林中影响力巨大的max_depth在XGBoost中默认值为6,比GBDT中的调参空间略大,但还是没有太多的空间,因此影响力不足。

  2. 在GBDT中影响力巨大的max_features对标XGBoost中的colsample_by*系列参数,原则上来说影响力应该非常大,但由于三个参数共同作用,调参难度较高,在只有1个参数作用时效果略逊于max_features

  3. 精剪枝参数往往不会对模型有太大的影响,但在XGBoost当中,min_child_weight与结构分数的计算略微相关,因此有时候会展现出较大的影响力。

  4. 类似于objective这样影响整体学习能力的参数一般都有较大的影响力,但XGBoost当中每种任务可选的损失函数不多,因此一般损失函数不在调参范围之内,故认为该参数的影响力不明显。

  5. XGBoost的初始化分数只能是数字,因此当迭代次数足够多、数据量足够大时,起点的影响会越来越小。因此我们一般不会对base_score进行调参。

在调参的时候,我们首先会考虑所有影响力巨大的参数,当算力足够/优化算法运行较快的时候,我们可以考虑将大部分时候具有影响力的参数也都加入参数空间。一般来说,只要样本量足够,我们还是愿意尝试subsample以及max_depth,如果算力充足,我们还可以加入obejctive这样或许会有效的参数。需要说明的是,一般不会同时使用三个colsample_by*参数、更不会同时调试三个colsample_by*参数。首先,参数colsample_bylevel较为不稳定,不容易把握,因此当训练资源充足时,会同时调整colsample_bytreecolsample_bynode。如果计算资源不足,或者优先考虑节约计算时间,则会先选择其中一个参数、尝试将特征量控制在一定范围内来建树,并观察模型的结果。在这三个参数中,使用bynode在分枝前随机,比使用bytree建树前随机更能带来多样性、更能对抗过拟合,但同时也可能严重地伤害模型的学习能力。

        在这样的基本思想下,再结合硬件与运行时间因素,将选择如下参数进行调整,并使用基于TPE贝叶斯优化(HyperOpt)对XGBoost进行优化——

参数
num_boost_round
eta
booster
colsample_bynode
colsample_bytree
gamma
lambda
min_child_weight
max_depth
subsamples
objective

在此基础上,我们需要进一步确认参数空间:

  • 对于有界的参数(比如colsample_bynodesubsamples等),或者有固定选项的参数(比如booster,objective),无需确认参数空间。
     
  • 对取值较小的参数(例如学习率eta,一般树模型的min_impurity_decrease等),或者通常会向下调整的参数(比如max_depth),一般是围绕默认值向两边展开构建参数空间。
     
  • 对于取值可大可小,且原则上可取到无穷值的参数(num_boost_roundgammalambdamin_child_weight等),一般需要绘制学习曲线进行提前探索,或者也可以设置广而稀的参数空间,来一步步缩小范围

现在我们对num_boost_round和min_child_weight参数绘制学习曲线进行轻度探索。如下所示:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import xgboost as xgb
from sklearn.model_selection import cross_validate, KFold

data = pd.read_csv(r"F:\\Jupyter Files\\机器学习进阶\\datasets\\House Price\\train_encode.csv",index_col=0)
X = data.iloc[:,:-1]
y = data.iloc[:,-1]
data_xgb = xgb.DMatrix(X,y)
#定义一个函数,用来检测模型迭代完毕后的过拟合情况
def overfitcheck(result):
    return (result.iloc[-1,2] - result.iloc[-1,0]).min()

◆ num_boost_round

train = []
test = []
option = np.arange(10,300,10)
overfit = []
for i in option:
    params = {"max_depth":5,"seed":1412,"eta":0.1, "nthread":16
             }
    result = xgb.cv(params,data_xgb,num_boost_round=i
                ,nfold=5 #补充交叉验证中所需的参数,nfold=5表示5折交叉验证
                ,seed=1412 #交叉验证的随机数种子,params中的是管理boosting过程的随机数种子
               )
    overfit.append(overfitcheck(result))
    train.append(result.iloc[-1,0])
    test.append(result.iloc[-1,2])
plt.plot(option,test);
plt.plot(option,train);
plt.plot(option,overfit);

 100棵树之后损失几乎没有再下降,因此num_boost_round的范围可以定到range(50,200,10)。

 ◆ min_child_weight

作为ℎ𝑖值之和,min_child_weight的真实值是可以计算出来的,但精确的计算需要跟随xgboost建树的过程运行,因此比较麻烦。遗憾的是,xgboost官方并未提供调用树结构以及ℎ𝑖值的接口,因此最佳方案其实是对每个叶子上的样本量进行估计。

X.shape #(1460, 80)

现在总共有样本1460个,在五折交叉验证中训练集共有1460*0.8 = 1168个样本。由于CART树是二叉树,我们规定的最大深度为5,因此最多有25=3225=32个叶子节点,平均每个叶子结点上的样本量大概为1168/32 = 36.5个。粗略估计,如果min_child_weight是一个小于36.5的值,就可能对模型造成巨大影响。当然,不排除有大量样本集中在一片叶子上的情况,因此我们可以设置备选范围稍微放大,例如设置为[0,100]来观察模型的结果。

train = []
test = []
option = np.arange(0,100,1)
overfit = []
for i in option:
    params = {"max_depth":5,"seed":1412,"eta":0.1, "nthread":16
              ,"min_child_weight":i
             }
    result = xgb.cv(params,data_xgb,num_boost_round=50
                ,nfold=5 #补充交叉验证中所需的参数,nfold=5表示5折交叉验证
                ,seed=1412 #交叉验证的随机数种子,params中的是管理boosting过程的随机数种子
               )
    overfit.append(overfitcheck(result))
    train.append(result.iloc[-1,0])
    test.append(result.iloc[-1,2])
plt.plot(option,test);
plt.plot(option,train);
plt.plot(option,overfit);

 

很明显,min_child_weight在0~40的范围之内对测试集上的交叉验证损失有较好的抑制作用,因此我们可以将min_child_weight的调参空间设置为range(0,50,2)来进行调参。

 如此,全部参数的参数空间就确定了,如下所示:

参数范围
num_boost_round学习曲线探索,最后定为(50,200,10)
eta以0.3为中心向两边延展,最后定为(0.05,2.05,0.05)
booster两种选项["gbtree","dart"]
colsample_bytree设置为(0,1]之间的值,但由于还有参数bynode,因此整体不宜定得太小,因此定为(0.3,1,0.1)
colsample_bynode设置为(0,1]之间的值,定为(0.1,1,0.1)
gamma学习曲线探索,有较大可能需要改变,定为(1e6,1e7,1e6)
lambda学习曲线探索,定为(0,3,0.2)
min_child_weight学习曲线探索,定为(0,50,2)
max_depth以6为中心向两边延展,右侧范围定得更大(2,30,2)
subsample设置为(0,1]之间的值,定为(0.1,1,0.1)
objective两种回归类模型的评估指标["reg:squarederror", "reg:squaredlogerror"]
rate_drop如果选择"dart"树所需要补充的参数,设置为(0,1]之间的值(0.1,1,0.1)

一般在初次搜索时,我们会设置范围较大、较为稀疏的参数空间,然后在多次搜索中逐渐缩小范围、降低参数空间的维度。

2. 基于TEP对XGBoost进行优化

import time
import xgboost as xgb
#导入优化算法
import hyperopt
from hyperopt import hp, fmin, tpe, Trials, partial
from hyperopt.early_stop import no_progress_loss

data = pd.read_csv(r"F:\\Jupyter Files\\机器学习进阶\\datasets\\House Price\\train_encode.csv",index_col=0)
X = data.iloc[:,:-1]
y = data.iloc[:,-1]

Step 1.建立benchmark

算法RF
(TPE)
AdaBoost
(TPE)
GBDT
(TPE)
5折验证
运行时间
0.22s0.27s1.54s(↑)
测试最优分数
(RMSE)
28346.67335169.73026415.835(↓)

Step 2.定义目标函数、参数空间、优化函数、验证函数

①目标函数

def hyperopt_objective(params):
    paramsforxgb = {"eta":params["eta"]
                    ,"booster":params["booster"]
                    ,"colsample_bytree":params["colsample_bytree"]
                    ,"colsample_bynode":params["colsample_bynode"]
                    ,"gamma":params["gamma"]
                    ,"lambda":params["lambda"]
                    ,"min_child_weight":params["min_child_weight"]
                    ,"max_depth":int(params["max_depth"])
                    ,"subsample":params["subsample"]
                    ,"objective":params["objective"]
                    ,"rate_drop":params["rate_drop"]
                    ,"nthread":14
                    ,"verbosity":0
                    ,"seed":1412}
    result = xgb.cv(params,data_xgb, seed=1412, metrics=("rmse")
                    ,num_boost_round=int(params["num_boost_round"]))
    return result.iloc[-1,2]

②参数空间

param_grid_simple = {'num_boost_round': hp.quniform("num_boost_round",50,200,10)
                     ,"eta": hp.quniform("eta",0.05,2.05,0.05)
                     ,"booster":hp.choice("booster",["gbtree","dart"])
                     ,"colsample_bytree":hp.quniform("colsample_bytree",0.3,1,0.1)
                     ,"colsample_bynode":hp.quniform("colsample_bynode",0.1,1,0.1)
                     ,"gamma":hp.quniform("gamma",1e6,1e7,1e6)
                     ,"lambda":hp.quniform("lambda",0,3,0.2)
                     ,"min_child_weight":hp.quniform("min_child_weight",0,50,2)
                     ,"max_depth":hp.choice("max_depth",[*range(2,30,2)])
                     ,"subsample":hp.quniform("subsample",0.1,1,0.1)
                     ,"objective":hp.choice("objective",["reg:squarederror","reg:squaredlogerror"])
                     ,"rate_drop":hp.quniform("rate_drop",0.1,1,0.1)
                    }

③优化函数

def param_hyperopt(max_evals=100):
    
    #保存迭代过程
    trials = Trials()
    
    #设置提前停止
    early_stop_fn = no_progress_loss(30)
    
    #定义代理模型
    params_best = fmin(hyperopt_objective
                       , space = param_grid_simple
                       , algo = tpe.suggest
                       , max_evals = max_evals
                       , verbose=True
                       , trials = trials
                       , early_stop_fn = early_stop_fn
                      )
    
    #打印最优参数,fmin会自动打印最佳分数
    print("\n","\n","best params: ", params_best,
          "\n")
    return params_best, trials

Step 3.训练贝叶斯优化器

XGBoost中涉及到前所未有多的随机性,因此模型可能表现得极度不稳定,需要多尝试几次贝叶斯优化来观察模型的稳定性。因此在这里我们完成了多次贝叶斯优化,查看如下的结果:

params_best, trials = param_hyperopt(100)
57%|██████████████████████████▊                    | 57/100 [05:43<04:18,  6.02s/trial, best loss: 26775.553385333333]

 best params:  {'booster': 1, 'colsample_bynode': 0.5, 'colsample_bytree': 1.0, 'eta': 0.5, 'gamma': 10000000.0, 'lambda': 1.6, 'max_depth': 2, 'min_child_weight': 0.0, 'num_boost_round': 110.0, 'objective': 0, 'rate_drop': 0.1, 'subsample': 0.7000000000000001} 
params_best, trials = param_hyperopt(100)
 32%|███████████████                                | 32/100 [05:21<11:23, 10.05s/trial, best loss: 26803.143880333333]

 best params:  {'booster': 1, 'colsample_bynode': 0.9, 'colsample_bytree': 0.4, 'eta': 1.3, 'gamma': 9000000.0, 'lambda': 1.2000000000000002, 'max_depth': 8, 'min_child_weight': 4.0, 'num_boost_round': 180.0, 'objective': 0, 'rate_drop': 0.1, 'subsample': 1.0} 
params_best, trials = param_hyperopt(100)
52%|████████████████████████▍                      | 52/100 [05:26<05:01,  6.29s/trial, best loss: 27745.835937666667]

 best params:  {'booster': 1, 'colsample_bynode': 0.30000000000000004, 'colsample_bytree': 1.0, 'eta': 2.0, 'gamma': 7000000.0, 'lambda': 0.0, 'max_depth': 8, 'min_child_weight': 2.0, 'num_boost_round': 110.0, 'objective': 0, 'rate_drop': 0.4, 'subsample': 0.7000000000000001} 

根据多次迭代情况,首先,objective在所有迭代中都被选为"reg:squarederror",这也是xgboost的默认值,因此不再对该参数进行搜索。同样的。booster参数都被选为"dart",因此基本可以确认对目前的数据使用DART树是更好的选择。对于其他参数,我们则根据搜索结果修改空间范围、增加空间密度,一般让范围向选中更多的一边倾斜,并且减小步长。例如num_boost_round从来没有选到100以下的值,一次接近上限,因此可以将原本的范围(50,200,10)修改为(100,300,10)。colsample_bynode的结果均匀地分布在0.3~1之间,可以考虑不更换范围,但缩小步长。colsample_bytree的结果更多偏向于1.0,因此可以考虑提升下限。其他的参数也以此类推:

Step 4.在此基础上继续调整参数空间

param_grid_simple = {'num_boost_round': hp.quniform("num_boost_round",100,300,10)
                     ,"eta": hp.quniform("eta",0.05,2.05,0.05)
                     ,"colsample_bytree":hp.quniform("colsample_bytree",0.5,1,0.05)
                     ,"colsample_bynode":hp.quniform("colsample_bynode",0.3,1,0.05)
                     ,"gamma":hp.quniform("gamma",5e6,1.5e7,5e5)
                     ,"lambda":hp.quniform("lambda",0,2,0.1)
                     ,"min_child_weight":hp.quniform("min_child_weight",0,10,0.5)
                     ,"max_depth":hp.choice("max_depth",[*range(2,15,1)])
                     ,"subsample":hp.quniform("subsample",0.5,1,0.05)
                     ,"rate_drop":hp.quniform("rate_drop",0.1,1,0.05)
                    }
def hyperopt_objective(params):
    paramsforxgb = {"eta":params["eta"]
                    ,"colsample_bytree":params["colsample_bytree"]
                    ,"colsample_bynode":params["colsample_bynode"]
                    ,"gamma":params["gamma"]
                    ,"lambda":params["lambda"]
                    ,"min_child_weight":params["min_child_weight"]
                    ,"max_depth":int(params["max_depth"])
                    ,"subsample":params["subsample"]
                    ,"rate_drop":params["rate_drop"]
                    ,"booster":"dart"
                    ,"nthred":14
                    ,"verbosity":0
                    ,"seed":1412}
    result = xgb.cv(params,data_xgb, seed=1412, metrics=("rmse")
                    ,num_boost_round=int(params["num_boost_round"]))
    return result.iloc[-1,2]

Step 5.在修改后的参数空间上,继续训练贝叶斯优化器

params_best, trials = param_hyperopt(100)
100%|██████████████████████████████████████████████| 100/100 [02:38<00:00,  1.59s/trial, best loss: 25711.822916666668]
 
 best params:  {'colsample_bynode': 0.7000000000000001, 'colsample_bytree': 0.75, 'eta': 0.1, 'gamma': 13500000.0, 'lambda': 1.8, 'max_depth': 3, 'min_child_weight': 1.5, 'num_boost_round': 210.0, 'rate_drop': 0.7000000000000001, 'subsample': 1.0} 
params_best, trials = param_hyperopt(100)
100%|██████████████████████████████████████████████| 100/100 [02:33<00:00,  1.53s/trial, best loss: 25662.024739666667]

 best params:  {'colsample_bynode': 0.45, 'colsample_bytree': 1.0, 'eta': 0.05, 'gamma': 13000000.0, 'lambda': 0.5, 'max_depth': 6, 'min_child_weight': 0.5, 'num_boost_round': 150.0, 'rate_drop': 0.65, 'subsample': 0.8500000000000001} 
params_best, trials = param_hyperopt(100)
58%|███████████████████████████▎                   | 58/100 [01:33<01:07,  1.62s/trial, best loss: 25737.109375333337]
 
 best params:  {'colsample_bynode': 0.7000000000000001, 'colsample_bytree': 0.9500000000000001, 'eta': 0.05, 'gamma': 8000000.0, 'lambda': 0.8, 'max_depth': 9, 'min_child_weight': 1.0, 'num_boost_round': 160.0, 'rate_drop': 0.30000000000000004, 'subsample': 0.8} 

在搜索当中得到的最佳分数是25662.024。现在尝试在验证函数上验证这一组参数:

Step 6.验证参数

def hyperopt_validation(params):
    paramsforxgb = {"eta":params["eta"]
                    ,"booster":"dart"
                    ,"colsample_bytree":params["colsample_bytree"]
                    ,"colsample_bynode":params["colsample_bynode"]
                    ,"gamma":params["gamma"]
                    ,"lambda":params["lambda"]
                    ,"min_child_weight":params["min_child_weight"]
                    ,"max_depth":int(params["max_depth"])
                    ,"subsample":params["subsample"]
                    ,"rate_drop":params["rate_drop"]
                    ,"nthred":14
                    ,"verbosity":0
                    ,"seed":1412}
    result = xgb.cv(params,data_xgb, seed=1412, metrics=("rmse")
                    ,num_boost_round=int(params["num_boost_round"]))
    return result.iloc[-1,2]
bestparams = {'colsample_bynode': 0.45
               , 'colsample_bytree': 1.0
               , 'eta': 0.05
               , 'gamma': 13000000.0
               , 'lambda': 0.5
               , 'max_depth': 6
               , 'min_child_weight': 0.5
               , 'num_boost_round': 150.0
               , 'rate_drop': 0.65
               , 'subsample': 0.8500000000000001} 
start = time.time()
hyperopt_validation(bestparams)
25368.487630333333
end = (time.time() - start)
print(end)
1.1478571891784668
算法RF
(TPE)
AdaBoost
(TPE)
GBDT
(TPE)
XGB
(TPE)
5折验证
运行时间
0.22s0.27s1.54s(↑)1.14s(↓)
测试最优分数
(RMSE)
28346.67335169.73026415.835(↓)25368.487(↓)

  • 4
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 下面是一个使用贝叶斯优化来调整XGBoost超参数的示例代码: ```python import xgboost as xgb from bayes_opt import BayesianOptimization # 定义优化目标函数 def xgb_cv(max_depth, learning_rate, n_estimators, gamma, min_child_weight, subsample, colsample_bytree): params = { 'eval_metric': 'rmse', 'max_depth': int(max_depth), 'learning_rate': learning_rate, 'n_estimators': int(n_estimators), 'gamma': gamma, 'min_child_weight': int(min_child_weight), 'subsample': subsample, 'colsample_bytree': colsample_bytree, 'n_jobs': -1, 'random_state': 42 } # 进行交叉验证 cv_result = xgb.cv(params, dtrain, num_boost_round=100, early_stopping_rounds=10, stratified=False) return -1.0 * cv_result['test-rmse-mean'].iloc[-1] # 定义参数范围 pbounds = {'max_depth': (3, 10), 'learning_rate': (0.01, 0.3), 'n_estimators': (50, 200), 'gamma': (0, 10), 'min_child_weight': (1, 10), 'subsample': (0.5, 1), 'colsample_bytree': (0.1, 1)} # 进行贝叶斯优化,找到最优超参数 optimizer = BayesianOptimization(f=xgb_cv, pbounds=pbounds, random_state=42) optimizer.maximize(init_points=5, n_iter=25) # 输出最优结果 print(optimizer.max) ``` 在上面的代码中,我们使用了XGBoost和贝叶斯优化的库。我们首先定义了一个优化的目标函数xgb_cv,它接受一些参数,构建XGBoost模型,并对模型进行交叉验证来计算目标值。然后我们定义了每个参数的范围,然后使用BayesianOptimization库来进行贝叶斯优化,找到最大化目标函数的最优参数组合。最后,我们输出了最优结果。 ### 回答2: 贝叶斯优化是一种用于超参数调优的统计方法,能够更高效地找到最优参数组合。在使用XGBoost算法时,也可以通过贝叶斯优化来搜索最佳的超参数组合。 首先,我们需要定义一个目标函数,用于评估不同超参数组合的性能。目标函数通常会根据给定超参数组合在训练集上进行交叉验证,并返回一个性能指标,如准确率或均方根误差。 接下来,我们需要定义超参数的搜索空间。对于XGBoost算法,常见的超参数包括学习率、树的深度、子采样比例等。贝叶斯优化通过在搜索空间内随机采样一些点,并利用高斯过程模型来建立超参数与性能指标之间的映射关系,进而根据这个模型预测下一个最有可能的超参数组合。 按照这个过程,我们可以进行多次迭代,每次得到一个新的超参数组合,并利用目标函数评估其性能。然后,我们将其加入贝叶斯优化的历史数据集中,并更新高斯过程模型,以便更准确地预测下一个最佳超参数组合。 最后,当迭代次数达到预设值或满足一定终止条件时,我们就可以得到一个在训练集上表现最好的超参数组合。 总结来说,贝叶斯优化XGBoost超参数调优中能够更高效地搜索最佳超参数组合。通过定义目标函数和搜索空间,并利用贝叶斯优化的方法迭代找到最佳超参数组合,可以显著提高XGBoost算法的性能。 ### 回答3: 贝叶斯优化是一种用于调整XGBoost模型超参数的方法。XGBoost是一种强大的机器学习框架,但正确选择合适的超参数模型性能至关重要。 首先,我们需要确定要调整的超参数。常见的超参数包括学习率、树的最大深度、叶子节点最小权重等。这些超参数的值将影响模型的准确性和复杂性。 接下来,我们使用贝叶斯优化方法来找到最佳的超参数组合。贝叶斯优化考虑了每次迭代的参数和结果之间的关联性。它建立了一个概率模型,并在每次迭代中根据先前的结果调整超参数来选择下一次迭代的参数。这允许我们在较少的迭代次数内找到最佳的超参数组合,从而节省时间和计算资源。 在选择下一组参数并进行训练之后,我们需要计算所得模型的性能指标,如准确率、精确率、召回率等。根据这些指标,我们可以确定当前超参数组合的性能,并将其与先前的结果进行比较。 接着,我们将优化过程迭代多次,直到找到最佳的超参数组合为止。通过使用贝叶斯优化方法,我们能够在较短时间内找到最优的超参数组合,提高模型的准确性和鲁棒性。 综上所述,贝叶斯优化是一种有效的方法来调整XGBoost模型超参数。通过建立概率模型并根据先前的结果来选择下一个参数组合,贝叶斯优化能够帮助我们快速找到最佳的超参数组合,从而提高模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值