312. Burst Balloons

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.

Note:
(1) You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
(2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example:

Given [3, 1, 5, 8]

Return 167

example:
nums = [3,1,5,8] –> [3,5,8] –> [3,8] –> [8] –> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167

这道题用的是动态规划思想。其实从整个过程来看,最后一步总是剩下一个数字来和两个1相乘,比方说上面例子中的数字8。也就是说,这个数字两边的区域的数字并没有混乘(如果混乘的话,中间的数字8就不会留到最后了),故这个最后的数字可以把整个序列划分为两个部分,这就是动态规划结构的构造基础。
dp[i][j]的含义就是从序列 i 位置到序列 j 位置(不包含边界即(i,j))的最优值。那么递推式就显而易见了:
dp[i][j]=max(dp[i][k]+dp[k][j]+nums[i]*nums[k]*nums[j])k从i+1到j-1

class Solution {
public:
    int maxCoins(vector<int>& nums) {
        nums.insert(nums.begin(),1);
        nums.push_back(1);
        int n=nums.size();
        vector<vector<int>> dp(n,vector<int>(n,0));
        for(int i=2;i<n;i++)
        {
            for(int left=0;left<n-i;left++)
            {
                int right=left+i;
                for(int j=left+1;j<right;j++)
                    dp[left][right]=max(dp[left][right],dp[left][j]+dp[j][right]+nums[left]*nums[right]*nums[j]);
            }
        }
        return dp[0][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值