最近在看机器学习的东西发现验证集的(Validation set) 有时候被提起到,以时间没明白验证集的真正用途。
首先,这三个名词在机器学习领域的文章中是很常见的,以下是这三个词的定义。
Training set: A set of examples used for learning, which is to fit the parameters [i.e., weights] of the classifier.
Validation set: A set of examples used to tune the parameters [i.e., architecture, not weights] of a classifier, for example to choose the number of hidden units in a neural network.Test set: A set of examples used only to assess the performance [generalization] of a fully specified classifier.
训练集:学习样本数据集,通过匹配一些参数来建立一个分类器。建立一种分类的方式,主要是用来训练模型的。
验证集:对学习出来的模型,调整分类器的参数,如在神经网络中选择隐藏单元数。验证集还用来确定网络结构或者控制模型复杂程度的参数。
测试集:主要是测试训练好的模型的分辨能力(识别率等)
显然,training set是用来训练模型或确定模型参数的,如ANN中权值等; validation set是用来做模型选择(model selection),即做模型的最终优化及确定的,如ANN的结构;而 test set则纯粹是为了测试已经训练好的模型的推广能力。当然,test set这并不能保证模型的正确性,他只是说相似的数据用此模型会得出相似的结果。但实际应用中,一般只将数据集分成两类,即training set 和test set,大多数文章并不涉及validation set。
针对数据偏差与数据方差的关系
偏差:描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据,如下图第二行所示。
方差:描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散,如下图右列所示。