AI实战营:MMPreTrain代码实现

  • 环境

    • 环境安装        
    • pip install openmim
      mim install mmengine
      mim install mmcv
      mim install mmpretrain
      # 安装多模态模型
      pip install "mmpretrain[multimodal]"
    • 验证环境
    • In [1]: import mmengine
      
      In [2]: mmengine.__version__
      Out[2]: '0.7.3'
      
      In [3]: import mmcv
      
      In [4]: mmcv.__version__
      Out[4]: '2.0.0'
      
      In [5]: import mmpretrain
      
      In [6]: mmpretrain.__version__
      Out[6]: '1.0.0rc8'
    • 初始应用
      • 导入MMPretrain相关包:模型获取,模型列举,模型推理
      • from mmpretrain import get_model, list_models, inference_model
      • 获取分类任务中resnet18相关模型
      • In [8]: list_models(task="Image Classification", pattern="resnet18")
        Out[8]: ['resnet18_8xb16_cifar10', 'resnet18_8xb32_in1k']

      • 获取模型冰查看模型类型及其对应的backbone
      • In [9]: model = get_model('resnet18_8xb32_in1k')
        
        In [10]: type(model)
        Out[10]: mmpretrain.models.classifiers.image.ImageClassifier
        
        In [11]: type(model.backbone)
        Out[11]: mmpretrain.models.backbones.resnet.ResNet

      • 模型推理
      • inference_model(mode, r"D:\workspace\.git\OpenMMLabCamp\bird.jpg", show=True)

         没有加载预训练权重导致上述问题

      • In [2]: list_models(task='Image Caption', pattern='blip')
        Out[2]: ['blip-base_3rdparty_caption', 'blip2-opt2.7b_3rdparty-zeroshot_caption']
        
        In [3]: inference_model('blip-base_3rdparty_caption', './mmpretrain/demo/cat-dog.png', show=True)

        推理结果如下:

  • 猫狗分类训练
    • 训练结果如下:
    • 2023/06/06 22:37:47 - mmengine - INFO - Exp name: dog_and_cat_20230606_223441
      2023/06/06 22:37:47 - mmengine - INFO - Saving checkpoint at 5 epochs
      2023/06/06 22:37:49 - mmengine - INFO - Epoch(val) [5][51/51]    accuracy/top1: 95.7527  data_time: 0.0022  time: 0.0252

    • 在测试集上测试结果
    • .\tools\test.py configs2/dog_and_cat.py --checkpoint work_dirs/dog_and_cat/epoch_5.pth
      

    • 样本测试结果存入pkl
    • .\tools\test.py mmpretrain configs2/dog_and_cat.py --checkpoint work_dirs/dog_and_cat/epoch_5.pth
      

    • 分析测试结果
    • .\tools\analysis_tools\analyze_results.py configs2/dog_and_cat.py  rersult.pkl --out-dir annalyze
      
      

    • 生成混淆矩阵
    • .\tools\analysis_tools\confusion_matrix.py configs2/dog_and_cat.py  rersult.pkl --show --include-values
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值