行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测)

行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测)

目录

行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测)

1. 前言

2. 人体检测数据集说明

3. 基于YOLOv5的人体检测模型训练

4.人体检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

(2) 将ONNX模型转换为TNN模型

(3) Android端上部署模型

(4) 一些异常错误解决方法

5. 人体检测效果

6.项目源码下载


1. 前言

这是项目《行人检测(人体检测)》系列之《Android实现人体检测(含源码,可实时人体检测)》;本篇主要分享将Python训练后的YOLOv5的人体检测模型移植到Android平台。我们将开发一个简易的、可实时运行的人体检测Android Demo。

考虑到原始YOLOv5的模型计算量比较大,鄙人在YOLOv5s基础上,开发了一个非常轻量级的的人体检测模型yolov5s05_320。从效果来看,Android人体检测模型的检测效果还是可以的,高精度版本YOLOv5s平均精度平均值mAP_0.5:0.95=0.84354,而轻量化版本yolov5s05_416平均精度平均值mAP_0.5:0.95=0.76103左右。APP在普通Android手机上可以达到实时的检测识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。

先展示一下Android Demo人体检测的效果

【Android APP体验】https://download.csdn.net/download/guyuealian/87441942

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/128954615


 更多项目《行人检测(人体检测)》系列文章请参考:

  1. 行人检测(人体检测)1:人体检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/128821763
  2. 行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/128954588
  3. 行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954615
  4. 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954638

如果需要进行人像分割,实现一键抠图效果,请参考文章:《一键抠图Portrait Matting人像抠图 (C++和Android源码)


2. 人体检测数据集说明

目前收集VOC,COCO和MPII数据集,总数据量约10W左右,可用于人体(行人)检测模型算法开发。这三个数据集都标注了人体检测框,但没有人脸框,考虑到很多项目业务需求,需要同时检测人脸和人体框;故已经将这三个数据都标注了person和face两个标签,以便深度学习目标检测模型训练。

关于人体检测数据集使用说明和下载,详见另一篇博客说明:《行人检测(人体检测)1:人体检测数据集(含下载链接)》 行人检测(人体检测)1:人体检测数据集(含下载链接)_AI吃大瓜的博客-CSDN博客


3. 基于YOLOv5的人体检测模型训练

官方YOLOv5给出了YOLOv5l,YOLOv5m,YOLOv5s等模型。考虑到手机端CPU/GPU性能比较弱鸡,直接部署yolov5s运行速度十分慢。所以本人在yolov5s基础上进行模型轻量化处理,即将yolov5s的模型的channels通道数全部都减少一半,并且模型输入由原来的640×640降低到416×416或者320×320,该轻量化的模型我称之为yolov5s05。轻量化后的模型yolov5s05比yolov5s计算量减少了16倍,参数量减少了7倍。

下面是yolov5s05和yolov5s的参数量和计算量对比:

模型input-sizeparams(M)GFLOPs
yolov5s640×6407.216.5
yolov5s05416×4161.71.8
yolov5s05320×3201.71.1

yolov5s05和yolov5s训练过程完全一直,仅仅是配置文件不一样而已;碍于篇幅,本篇博客不在赘述,详细训练过程请参考: 《行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码)》https://blog.csdn.net/guyuealian/article/details/128954588


4.人体检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

训练好yolov5s05或者yolov5s模型后,你需要将模型转换为ONNX模型,并使用onnx-simplifier简化网络结构

# 转换yolov5s05模型
python export.py --weights "data/model/yolov5s05_320/weights/best.pt" --img-size 320 320
# 转换yolov5s模型
python export.py --weights "data/model/yolov5s_640/weights/best.pt" --img-size 640 640

GitHub: https://github.com/daquexian/onnx-simplifier
Install:  pip3 install onnx-simplifier 

(2) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署:

TNN转换工具:

​​

(3) Android端上部署模型

项目实现了Android版本的人体检测Demo,部署框架采用TNN,支持多线程CPU和GPU加速推理,在普通手机上可以实时处理。Android源码核心算法YOLOv5部分均采用C++实现,上层通过JNI接口调用

package com.cv.tnn.model;

import android.graphics.Bitmap;

public class Detector {

    static {
        System.loadLibrary("tnn_wrapper");
    }


    /***
     * 初始化模型
     * @param model: TNN *.tnnmodel文件文件名(含后缀名)
     * @param root:模型文件的根目录,放在assets文件夹下
     * @param model_type:模型类型
     * @param num_thread:开启线程数
     * @param useGPU:关键点的置信度,小于值的坐标会置-1
     */
    public static native void init(String model, String root, int model_type, int num_thread, boolean useGPU);

    /***
     * 检测
     * @param bitmap 图像(bitmap),ARGB_8888格式
     * @param score_thresh:置信度阈值
     * @param iou_thresh:  IOU阈值
     * @return
     */
    public static native FrameInfo[] detect(Bitmap bitmap, float score_thresh, float iou_thresh);
}

如果你想在这个Android Demo部署你自己训练的YOLOv5模型,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把TNN模型代替你模型即可。

(4) 一些异常错误解决方法

  • TNN推理时出现:Permute param got wrong size

官方YOLOv5:  GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite 

如果你是直接使用官方YOLOv5代码转换TNN模型,部署TNN时会出现这个错误Permute param got wrong size,这是因为TNN最多支持4个维度计算,而YOLOv5在输出时采用了5个维度。你需要修改model/yolo.py文件 

​​

 export.py文件设置model.model[-1].export = True:

.....
    # Exports
    if 'torchscript' in include:
        export_torchscript(model, img, file, optimize)
    if 'onnx' in include:
        model.model[-1].export = True  # TNN不支持5个维度,修改输出格式
        export_onnx(model, img, file, opset, train, dynamic, simplify=simplify)
    if 'coreml' in include:
        export_coreml(model, img, file)

    # Finish
    print(f'\nExport complete ({time.time() - t:.2f}s)'
          f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
          f'\nVisualize with https://netron.app')

.....
  • TNN推理时效果很差,检测框一团麻

​​

 这个问题,大部分是模型参数设置错误,需要根据自己的模型,修改C++推理代码YOLOv5Param模型参数。


struct YOLOv5Param {
    ModelType model_type;                  // 模型类型,MODEL_TYPE_TNN,MODEL_TYPE_NCNN等
    int input_width;                       // 模型输入宽度,单位:像素
    int input_height;                      // 模型输入高度,单位:像素
    bool use_rgb;                          // 是否使用RGB作为模型输入(PS:接口固定输入BGR,use_rgb=ture时,预处理将BGR转换为RGB)
    bool padding;
    int num_landmarks;                     // 关键点个数
    NetNodes InputNodes;                   // 输入节点名称
    NetNodes OutputNodes;                  // 输出节点名称
    vector<YOLOAnchor> anchors;
    vector<string> class_names;            // 类别集合
};

input_width和input_height是模型的输入大小;vector<YOLOAnchor> anchors需要对应上,注意Python版本的yolov5s的原始anchor是

anchors:
  - [ 10,13, 16,30, 33,23 ]  # P3/8
  - [ 30,61, 62,45, 59,119 ]  # P4/16
  - [ 116,90, 156,198, 373,326 ]  # P5/32

而yolov5s05由于input size由原来640变成320,anchor也需要做对应调整:

anchors:
  - [ 5, 6, 8, 15, 16, 12 ]  # P3/8
  - [ 15, 30, 31, 22, 30, 60 ]  # P4/16
  - [ 58, 45, 78, 99, 186, 163 ]  # P5/32

因此C++版本的yolov5s和yolov5s05的模型参数YOLOv5Param如下设置

//YOLOv5s模型参数
static YOLOv5Param YOLOv5s_640 = {MODEL_TYPE_TNN,
                                  640,
                                  640,
                                  true,
                                  true,
                                  0,
                                  {{{"images", nullptr}}}, //InputNodes
                                  {{{"boxes", nullptr},   //OutputNodes
                                    {"scores", nullptr}}},
                                  {
                                          {"434", 32, {{116, 90}, {156, 198}, {373, 326}}},
                                          {"415", 16, {{30, 61}, {62, 45}, {59, 119}}},
                                          {"output", 8, {{10, 13}, {16, 30}, {33, 23}}},
                                  },
                                  CLASS_NAME
};

//YOLOv5s05模型参数
static YOLOv5Param YOLOv5s05_ANCHOR_416 = {MODEL_TYPE_TNN,
                                           416,
                                           416,
                                           true,
                                           true,
                                           0,
                                           {{{"images", nullptr}}}, //InputNodes
                                           {{{"boxes", nullptr},   //OutputNodes
                                             {"scores", nullptr}}},
                                           {
                                                   {"434", 32,{{75, 58}, {101, 129}, {242, 212}}},
                                                   {"415", 16, {{20, 40}, {40, 29}, {38, 77}}},
                                                   {"output", 8, {{6, 8}, {10, 20}, {21, 15}}}, //
                                           },
                                           CLASS_NAME
};
//YOLOv5s05模型参数
static YOLOv5Param YOLOv5s05_ANCHOR_320 = {MODEL_TYPE_TNN,
                                           320,
                                           320,
                                           true,
                                           true,
                                           0,
                                           {{{"images", nullptr}}}, //InputNodes
                                           {{{"boxes", nullptr},   //OutputNodes
                                             {"scores", nullptr}}},
                                           {
                                                   {"434", 32, {{58, 45}, {78, 99}, {186, 163}}},
                                                   {"415", 16, {{15, 30}, {31, 22}, {30, 60}}},
                                                   {"output", 8, {{5, 6}, {8, 15}, {16, 12}}}, //
                                           },
                                           CLASS_NAME
};
  • 运行APP闪退:dlopen failed: library "libomp.so" not found

参考解决方法:解决dlopen failed: library “libomp.so“ not found_PKing666666的博客-CSDN博客_dlopen failed


5. 人体检测效果

 【Android APP体验】https://download.csdn.net/download/guyuealian/87441942

APP在普通Android手机上可以达到实时的人体检测效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。


6.项目源码下载

 【Android APP体验】https://download.csdn.net/download/guyuealian/87441942

如需下载项目源码,请WX关注【AI吃大瓜】,回复【人体检测】即可下载

项目源码包含内容:

整套Android项目源码内容包含:

  1. 提供快速版yolov5s05人体检测模型,在普通手机可实时检测识别,CPU(4线程)约30ms左右,GPU约25ms左右
  2. 提供高精度版本yolov5s人体检测模型,CPU(4线程)约250ms左右,GPU约100ms左右
  3. Demo支持图片,视频,摄像头测试
  4. 所有依赖库都已经配置好,可直接build运行,若运行出现闪退,请参考dlopen failed: library “libomp.so“ not found 解决。

更多项目《行人检测(人体检测)》系列文章请参考:

  1. 行人检测(人体检测)1:人体检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/128821763
  2. 行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/128954588
  3. 行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954615
  4. 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954638

### 使用YOLOv5实现人物跟踪 #### 数据集的选择与准备 为了有效训练YOLOv5模型进行行人检测,需选择合适的数据集并按照特定格式整理。通常使用的数据集如COCO、VOC等都包了大量标注好的图像,这些对于训练目标检测模型非常有用[^1]。 #### 加载预训练模型 通过`ultralytics`库可以方便地加载已经预先训练好的YOLOv5模型: ```python from ultralytics import YOLO # 导入YOLO类[^2] model = YOLO(&#39;yolov5s.pt&#39;) # 载入小型版的YOLOv5预训练权重文件 ``` #### 实施行人检测 一旦有了初始化后的模型实例,就可以利用该模型来进行图片中的对象识别工作。下面是一段简单的代码片段来执行单张图片上的预测任务: ```python import cv2 def detect_person(image_path): results = model(image_path) # 对输入路径指定的图片做推理 persons = [] for result in results.xyxy[0]: label, confidence = int(result[-1]), float(result[-2]) if label == 0 and confidence > 0.5: # 假设标签&#39;person&#39;=0且置信度大于阈值 x_min, y_min, x_max, y_max = map(int, result[:4]) person_box = (x_min, y_min, x_max, y_max) persons.append(person_box) return persons ``` 这段函数接收一张图片的位置参数,并返回所有被标记为人形区域坐标的列表。 #### 行人跟踪算法的实现 针对视频流中连续帧间的物体移动情况设计跟踪逻辑非常重要。这里采用简单的方法——基于卡尔曼滤波器(Kalman Filter),它能有效地估计下一时刻位置从而关联前后两帧间相同个体。具体来说,在每一新到来的画面里找到最接近前一状态预测值的那个边界框即认为是同一个目标。 ```python class KalmanTracker: def __init__(self, initial_bbox): self.kf = cv2.KalmanFilter(4, 2) self.kf.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32) self.kf.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) self.kf.processNoiseCov = np.array([[1e-2, 0, 0, 0], [0, 1e-2, 0, 0], [0, 0, 5.0, 0], [0, 0, 0, 5.0]], np.float32) self.kf.measurementNoiseCov = np.array([[1e-1, 0], [0, 1e-1]], np.float32) center_x = (initial_bbox[0]+initial_bbox[2]) / 2. center_y = (initial_bbox[1]+initial_bbox[3]) / 2. measured = np.array([center_x, center_y], dtype=np.float32).reshape(-1, 1) self.kf.statePost = np.zeros((4, 1), dtype=np.float32) self.kf.correct(measured) def update(self, bbox=None): prediction = self.kf.predict() if bbox is not None: center_x = (bbox[0]+bbox[2]) / 2. center_y = (bbox[1]+bbox[3]) / 2. measurement = np.array([center_x, center_y], dtype=np.float32).reshape(-1, 1) self.kf.correct(measurement) return tuple(prediction.flatten()[:2]) trackers = [] # 存储当前正在跟踪的对象集合 for frame_idx, image_path in enumerate(video_frames): detected_boxes = detect_person(image_path) matched_trackers = set() for tracker_id, tracker in enumerate(trackers): predicted_position = tracker.update(None) best_match_distance = float(&#39;inf&#39;) match_index = -1 for i, box in enumerate(detected_boxes): distance_to_prediction = ((predicted_position[0]-box[0])**2+(predicted_position[1]-box[1])**2)**0.5 if distance_to_prediction < best_match_distance: best_match_distance = distance_to_prediction match_index = i if match_index >= 0: matched_trackers.add(tracker_id) trackers[tracker_id].update(detected_boxes.pop(match_index)) unmatched_detections = [(i, b) for i,b in enumerate(detected_boxes)] new_tracks = [KalmanTracker(b) for _,b in unmatched_detections] trackers.extend(new_tracks) ``` 上述代码展示了如何创建一个新的`KalmanTracker`对象以及更新现有轨迹的过程;当有新的未匹配的人脸出现时,则会为其分配全新的追踪者。 #### UI界面开发 最后一步就是构建图形化用户接口(GUI)以便直观查看实时处理效果。Python中有许多GUI框架可以选择,比如Tkinter、PyQt等等。此处仅给出概念性的指导而不提供具体的编码细节。
评论 49
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI吃大瓜

尊重原创,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值