深度学习算法在医学领域应用的几点思考

    近些年来医学成像技术、计算机技术和深度学习算法等都有较大的进步,利用深度学习算法进行医学图像分析已经成为非常热点的研究方向,这对临床疾病诊断和治疗提供了新的技术手段。但是,深度学习算法对于医学图像的处理依然存在较大的问题。

1、最在的障碍------数据

1)样本数量的限制

    由于医疗图像涉及到患者的隐私、专业性较强等现实问题,医学图像能在大众中展现的部分相对较少,内部交流采用的数据也并不是非常丰富。尽管有一些公开的数据集(如MICCAI、ISBI等挑战赛数据集),但是这些数据集中图像的数量依然有限,有些甚至只有二三十张图像。而深度学习需要大量的数据作为支撑才能有效的拟合出复杂的模型。一个有大量参数的模型,只有当我们相应地使用大量的数据来推断参数值时,模型才会拥有较高的准确性和泛化能力。利用有限的数据去推断或是训练一个较大的模型是有相当高的风险的,而医学图像分析与处理最重要的就是超低风险甚至零风险,这是由医疗行业的标准和性质决定的,这也是很多项目无法真正落地的原因。

2)样本标注问题

    医疗图像涉及到较多的专业知识,标准人员需要对病灶、人体组织、人体异物等的大小、形态、边缘等信息进行准确的判断,甚至需要有丰富经验的专家来进行二次或多次判断。现实生活中,不可能有大量的医生和专家从事标注工作,而相关专业的在校学生、护士等对数据的准确判断又缺乏必要的实际经验。专家标注数据的代价太高,没有充足的资金建立对应领域的图像数据库。这进一步增加了深度学习在医疗领域应用的难度。

3)样本平衡问题

    在进行图像处理过程中,尤其是使用深度学习算法,样本数量一定要有一定的均衡性。不能出现含有病灶的数据在所有数据中占比过低的情况,同时要兼顾不同的病灶类型,而且每个患者病灶的位置、形态、与相关组织的粘连情况等都是有较大区别的,这增加了数据分类与判断的难度。数据的采集质量也跟医院的采集设备、人员的实际操作等有很大的关系,这就造成数据天然的不均衡问题。

2、研究需要的专业性较强

    医学图像处理的研究要对医学图像有基础概念和基本的识别技能。而医学领域的分支众多,包括耳鼻喉、心脑血管、肿瘤、腺体、静动脉血管、骨科、检验科等,甚至每个科室分成更为细化的小科室。同时,医学图像采集方面,图像又包括核磁共振图像(MRI)、计算机断层扫描(CT)、医学X射线图像、超声成像、正电子发射断层扫描(PET)、病理图像(切片组织、血液组织等)等,而数据的采集基本也需要相对专业的医生进行操作。
    从图像采集到图像分析,再到分析结果的确认等都需要较为专业的人员进行。从事医疗领域的工程师和医护人员众多,但是具备相关专业领域必要素质的人员将大打折扣,更何况医疗涉及到领域众多,各领域分摊下来的人员相对较少,这也加大了深度学习在医学图像中应用的难度。

3、算法的选择

    申明一点,我并不支持所有的医疗领域的算法都一股脑的使用深度学习算法,深度学习算法的成功的确是人类的幸事,但是深度学习算法并不是万能的。在医疗领域,深度学习的应用依然有很长的路要走。传统算法并不能放弃,其成熟度、效率、准确度等已经经过多年的验证,尽管它也存在跟种各样的问题,但是谁能料定深度学习算法就一定没有问题呢。深度学习算法越来越强调“端到端”的处理过程,但是这相当于从看到图像到得出结论完全都是在“黑盒子”内进行,这样难道没有风险吗?当然我们可以从实际使用结果入手反推或是通过测试集结果反向证明模型的有效性,但是病人的情况五花八门,在数据库不丰富的情况下,其大规模应用过程中模型判断的准确性恐怕会打折扣。
    这里,我并不想评价深度学习和传统算法的好坏,这些都是一种解决办法的途径,如果未来深度学习可以在单项或是多项医学领域取得成效,那是很好的事情,但是如果没有实际可以落地的可应用的算法,那么就多方尝试。可以使用传统算法、可以使用众多的深度学习算法,也可以将二者结合。

总之,在医学图像处理领域,深度学习算法依然有很长的路要走。要思考的问题远远不只是本文中的这些问题,但是从未来发展来看,深度学习算法至少是此领域获得重大突破的一种方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gz7seven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值