机器学习技法课程学习笔记14-- Radial Basis Function Network

上节课我们主要介绍了Deep Learning的概念。Deep Learing其实是Neural Networ的延伸,神经元更多,网络结构更加复杂。深度学习网络在训练的过程中最核心的问题就是pre-training和regularization。pre-training中,我们使用denoising autoencoder来对初始化权重进行选择。denoising autoencoder与统计学中经常用来进行数据处理的PCA算法具有很大的关联性。这节课我们将介绍Radial Basis Function Network,把之前介绍的adial Basis Function和Neural Network联系起来。

RBF Network Hypothesis

之前我们介绍过,在SVM中引入Gaussian Kernel就能在无限多维的特征转换中得到一条“粗壮”的分界线(或者高维分界平面、分界超平面)。从结果来看,Gaussian SVM其实就是将一些Gaussian函数进行线性组合,而Gaussian函数的中心就位于Support Vectors上,最终得到预测模型gsvm(x)

这里写图片描述

Gaussian kernel的另一种叫法是Radial Basis Function(RBF) kernel,即径向基函数。这个名字从何而来?首先,radial表示Gaussian函数计算结果只跟新的点x与中心点xn的距离有关,与其它无关。basis function就是指Gaussian函数,最终的矩gsvm(x)就是由这些basis function线性组合而成。

从另外一个角度来看Gaussian SVM。首先,构造一个函数gn(x)

gn(x)=yneγ||xxn||2

上式中,指数项表示新的点x与xn之间的距离大小。距离越近,即权重越大,相当于对yn投的票数更多;而距离越远,权重越小,相当于对yn投的票数更少。其物理意义是新的点与xn的距离远近决定了gn(x)yn的接近程度。如果距离越近,则yngn(x)的权重影响越大;如果距离越远,则yngn(x)的权重影响越小。那么整体来说,gsvm(x)就由所有的SV组成的gn(x)线性组合而成,不同gn(x)对应的系数是αn,最后由sign函数做最后的选择。这个过程很类型我们之前介绍的aggregation中将所有较好的hypothesis线性组合,不同的gn(x)有不同的权重αn。我们把gn(x)叫做radial hypotheses,Gaussian SVM就是将所有SV对应的radial hypotheses进行线性组合(linear aggregation)。

这里写图片描述

那么,Radial Basis Function(RBF) Network其实就是上面Gaussian SVM概念的延伸,目的就是找到所有radial hypotheses的linear aggregation,得到更好的网络模型。

之所以叫作RBF Network是因为它的模型结构类似于我们之前介绍的Neural Network。

这里写图片描述

Neural Network与RBF Network在输出层基本是类似的,都是上一层hypotheses的线性组合(linear aggregation)。但是对于隐藏层的各个神经元来说,Neural Network是使用内积(inner-product)加上tanh()函数的方法,而RBF Network是使用距离(distance)加上Gaussian函数的方法。总的来说,RBF Network是Neural Network的一个分支。

这里写图片描述

至此,RBF Network Hypothesis以及网络结构可以写成如下形式:

这里写图片描述

上式中,μm表示每个中心点的位置,隐藏层每个神经元对应一个中心点;βm表示每个RBF的权重,即投票所占比重。

对应到Gaussian SVM上,上式中的RBF就是Gaussian函数。由于是分类问题,上式中的Output就是sign函数。其中,RBF的个数M就等于支持向量的个数SV,μm就代表每个SV的坐标xm,而βm就是在Dual SVM中推导得到的αnym值。那我们学习的目标就是根据已知的RBF和Output,来决定最好的中心点位置μm和权重系数βm

这里写图片描述

在之前介绍SVM的时候,我们就讲过Mercer定理:一个矩阵是Kernel的充分必要条件是它是对称的且是半正定的,条件比较苛刻。除了Gaussian kernel还有Polynomial kernel等等。Kernel实际上描述了两个向量之间的相似性,通过转换到z空间计算内积的方式,来表征二者之间的相似性。而RBF实际上是直接使用x空间的距离来描述了一种相似性,距离越近,相似性越高。因此,kernel和RBF可以看成是两种衡量相似性(similarity)的方式。本文介绍的Gaussian RBF即为二者的交集。

这里写图片描述

除了kernel和RBF之外,还有其它衡量相似性的函数。例如神经网络中的神经元就是衡量输入和权重之间的相似性。

经过以上分析,我们知道了RBF Network中distance similarity是一个很好的定义特征转换的方法。除此之外,我们还可以使用其它相似性函数来表征特征转换,从而得到更好的机器学习模型。

RBF Network Learning

我们已经介绍了RBF Network的Hypothesis可表示为:

这里写图片描述

其中μm表示中心点的位置。μm的个数M是人为决定的,如果将每个样本点xm都作为一个中心点,即M=N,则我们把这种结构称为full RBF Network。也就是说,对于full RBF Network,每个样本点都对最终的预测都有影响(uniform influence),影响的程度由距离函数和权重βm决定。如果每个样本点的影响力都是相同的,设为1,βm=1ym,那么相当于只根据距离的远近进行投票。最终将x与所有样本点的RBF距离线性组合,经过sign函数后,得到最终的预测分类结果。这实际上就是aggregation的过程,考虑并计入所有样本点的影响力,最后将x与所有样本点的distance similarity进行线性组合。

这里写图片描述

full RBF Network的矩可以表示为:

这里写图片描述

我们来看上式中的Gaussian函数项,当x与样本点xm越接近的时候,其高斯函数值越大。由于Gaussian函数曲线性质,越靠近中心点,值越大;偏离中心点,其值会下降得很快。也就是说,在所有N个中心样本点中,往往只有距离x最近的那个样本点起到关键作用,而其它距离x较远的样本点其值很小,基本可以忽略。因此,为了简化运算,我们可以找到距离x最近的中心样本点,只用这一个点来代替所有N个点,最后得到的矩gnbor(x)也只由该最近的中心点决定。这种模型叫做nearest neighbor model,只考虑距离x最近的那一个“邻居”。

当然可以对nearest neighbor model进行扩展,如果不是只选择一个“邻居”,而是选择距离x最近的k个“邻居”,进行uniformly aggregation,得到最终的矩gnbor(x)。这种方法通常叫做k近邻算法(k nearest neighbor)。

这里写图片描述

k nearest neighbor通常比nearest neighbor model效果更好,计算量上也比full RBF Network要简单一些。值得一提的是,k nearest neighbor与full RBF Network都是比较“偷懒”的方法。因为它们在训练模型的时候比较简单,没有太多的运算,但是在测试的时候却要花费更多的力气,找出最相近的中心点,计算相对复杂一些。

接下来,我们来看一下Full RBF Network有什么样的优点和好处。考虑一个squared error regression问题,且每个RBF的权重为βm而不是前面简化的ym。目的是计算最优化模型对应的βm值。该hypothesis可表示为:

这里写图片描述

很明显,这是一个简单的线性回归问题,每个RBF都可以看成是特征转换。特征转换后的向量zn可表示为:

zn=[RBF(xn,x1), RBF(xn,x2), , RBF(xn,xN)]

那么,根据之前线性回归介绍过的最优化解公式,就能快速地得到β的最优解为:

β=(ZTZ)1ZTy

上述解的条件是矩阵ZTZ是可逆的。

矩阵Z的大小是NxN,是一个方阵。而且,由于Z中每个向量zn表示该点与其它所有点的RBF distance,所以从形式上来说,Z也是对称矩阵。如果所有的样本点xn都不一样,则Z一定是可逆的。

这里写图片描述

根据Z矩阵的这些性质,我们可以对β的解进行化简,得到:

β=Z1y

β的解代入矩的计算中,以x1为例,得到:

gRBF(x1)=βTz1=yTZ1z1=yT [1 0  0]T=y1

结果非常有趣,模型的输出与原样本y1完全相同。同样,对任意的xn,都能得到gRBF(xn)=yn。因此,Ein(gRBF)=0。看起来,这个模型非常完美了,没有error。但是,我们之前就说过,机器学习中,Ein=0并非好事,很可能造成模型复杂度增加及过拟合。

这里写图片描述

当然,这种方法在某些领域还是很有用的。比如在函数拟合(function approximation)中,目标就是让Ein=0,使得原所有样本都尽可能地落在拟合的函数曲线上。

为了避免发生过拟合,我们可以引入正则项λ,得到β的最优解为:

β=(ZTZ+λI)1ZTy

这里写图片描述

我们再来看一下Z矩阵,Z矩阵是由一系列Gaussian函数组成,每个Gaussian函数计算的是两个样本之间的distance similarity。这里的Z与之前我们介绍的Gaussian SVM中的kernel K是一致的。当时我们得到kernel ridgeregression中线性系数β的解为:

β=(K+λI)1y

比较一下kernel ridgeregression与regularized full RBF Network的β解,形式上相似但不完全相同。这是因为regularization不一样,在kernel ridgeregression中,是对无限多维的特征转换做regularization,而在regularized full RBF Network中,是对有限维(N维度)的特征转换做regularization。因此,两者的公式解有细微差别。

这里写图片描述

除此之外,还有另外一种regularization的方法,就是不把所有N个样本点都拿来作中心点,而是只选择其中的M个样本点作为中心点。类似于SVM中的SV一样,只选择具有代表性的M个中心点。这样减少中心点数量的同时也就减少了权重的数量,能够起到regularization的效果,避免发生过拟合。

这里写图片描述

下一部分,我们将讨论如何选取M个中心点作为好的代表。

k-Means Algorithm

之所以要选择代表,是因为如果某些样本点很接近,那么就可以用一个中心点来代表它们。这就是聚类(cluster)的思想,从所有N个样本点中选择少数几个代表作为中心点。

这里写图片描述

聚类(clustering)问题是一种典型的非监督式学习(unsupervised learning)。它的优化问题有两个变量需要确定:一个是分类的分群值Sm,每一类可表示为S1,S2,,SM;另外一个是每一类对应的中心点μ1,μ2,,μM。那么对于该聚类问题的优化,其error function可使用squared error measure来衡量。

这里写图片描述

那么,我们的目标就是通过选择最合适的S1,S2,,SMμ1,μ2,,μM,使得Ein最小化。对应的公式可表示为:

这里写图片描述

从这个最小化公式,我们能够发现这是一个组合最佳化的问题,既要优化分群值Sm,又要求解每一类的中心点um。所以,这个最小化问题是比较复杂、难优化的。通常的办法是对S和μ分别进行最优化求解。

首先,如果μ1,μ2,,μM是固定的,目标就是只要对所有的xn进行分群归类。这个求解过程很简单,因为每个样本点只能属于一个群S,不能同时属于两个或多个群。所以,只要根据距离公式,计算选择离xn最近的中心点μ即可。

这里写图片描述

然后,如果S1,S2,,SM是固定的,目标就是只要找出每个类的中心点μ。显然,根据上式中的error function,所有的xn分群是已知的,那么该最小化问题就是一个典型的数值最优化问题。对于每个类群Sm,利用梯度下降算法,即可得到μm的解。

这里写图片描述

如上图所示,中心点μm就等于所有属于类群Sm的平均位置处。

经过以上的推导,我们得到了一个非常有名的一种unsupervised learning算法,叫做k-Means Algorithm。这里的k就是代表上面的M,表示类群的个数。

k-Means Algorithm的流程是这样的:首先,随机选择k个中心点μ1,μ2,,μk;然后,再由确定的中心点得到不同的类群S1,S2,,Sk;接着,再由确定的类群计算出新的不同的k个中心点;继续循环迭代计算,交互地对μ和S值进行最优化计算,不断更新μ和S值,直到程序收敛,实现Ein最小化。具体算法流程图如下所示:

这里写图片描述

有一个问题是,k-Means Algorithm的循环迭代一定会停止吗?或者说一定能得到最优解吗?答案是肯定的。因为每次迭代更新,μ和S值都会比上一次的值更接近最优解,也就是说Ein是不断减小的。而Ein的下界是0,所以,Ein最终会等于0,μ和S最终能得到最优解。

k-Means Algorithm已经介绍完毕。接下来,我们把k-Means Algorithm应用到RBF Network中去。首先,使用k-Means,得到原始样本的k个中心点。原始样本到k个中心点组成了RBF特征转换Φ(x)。然后,根据上面介绍过的线性模型,由最优化公式解计算得到权重β值。最后,将所有的Φ(x)β线性组合,即得到矩gRBFNET(x)的表达式。具体的算法流程如下所示:

这里写图片描述

值得一提的是,这里我们使用了unsupervised learning(k-Means)与我们上节课介绍的autoencoder类似,同样都是特征转换(feature transform)的方法。

在最优化求解过程中,参数有k-Means类群个数M、Gaussian函数参数λ等。我们可以采用validation的方法来选取最佳的参数值。

这里写图片描述

k-means and RBF Network in Action

下面这部分,我们将举几个例子,看一下k-Means Algorithm是如何处理分类问题的。

第一个例子,平面上有4个类群,k=4。首先,我们随机选择4个中心点,如下图中四种颜色的方块所示:

这里写图片描述

第一次迭代,由初始中心点,得到4个类群点的分布:

这里写图片描述

4个类群点确定后,再更新4个中心点的位置:

这里写图片描述

第二次迭代,由上面得到的4个中心点,再计算4个类群点的分布:

这里写图片描述

4个类群点确定后,再更新4个中心点的位置:

这里写图片描述

第三次迭代,由上面得到的4个中心点,再计算4个类群点的分布:

这里写图片描述

4个类群点确定后,再更新4个中心点的位置:

这里写图片描述

第四次迭代,由上面得到的4个中心点,再计算4个类群点的分布:

这里写图片描述

4个类群点确定后,再更新4个中心点的位置:

这里写图片描述

第五次迭代,由上面得到的4个中心点,再计算4个类群点的分布:

这里写图片描述

4个类群点确定后,再更新4个中心点的位置:

这里写图片描述

第六次迭代,由上面得到的4个中心点,再计算4个类群点的分布:

这里写图片描述

4个类群点确定后,再更新4个中心点的位置:

这里写图片描述

从上图我们可以看到,经过六次迭代计算后,聚类的效果已经相当不错了。从另外一个角度来说,k值的选择很重要,下面我们来看看不同的k值对应什么样的分类效果。

这里写图片描述

如上图所示,初始时,我们分别设定k为2,4,7,随机选择中心点位置。在经过多次迭代后,得到的聚类结果如下:

这里写图片描述

通过上面这个例子可以得出,不同的k值会得到不同的聚类效果。还有一点值得注意的是,初始中心点位置也可能会影响最终的聚类。例如上图中k=7的例子,初始值选取的右边三个中心点比较靠近,最后得到的右边三个聚类中心点位置也跟初始位置比较相近。所以,k值大小和初始中心点位置都会影响聚类效果。

接下来,我们把k-Means应用到RBF Network中,同样分别设定k为2,4,7,不同模型得到的分类效果如下:

这里写图片描述

很明显,k=2时,分类效果不是太好;k=4时,分类效果好一些;而k=7时,分类效果更好,能够更细致地将样本准确分类。这说明了k-Means中k值设置得是否合理,对RBF Network的分类效果起到重要的作用。

再来看一个例子,如果使用full RBF Network进行分类,即k=N,如下图左边所示,设置正则化因子λ=0.001。下图右边表示只考虑full RBF Network中的nearest neighbor。下图中间表示的是k=4的RBF Network的分类效果。

这里写图片描述

从上图的比较中,我们可以发现full RBF Network得到的分类线比较弯曲复杂。由于full RBF Network的计算量比较大,所以一般情况下,实际应用得不太多。

总结

本节课主要介绍了Radial Basis Function Network。RBF Network Hypothesis就是计算样本之间distance similarity的Gaussian函数,这类原型替代了神经网络中的神经元。RBF Network的训练学习过程,其实就是对所有的原型Hypotheses进行linear aggregation。然后,我们介绍了一个确定k个中心点的unsupervised learning算法,叫做k-Means Algorithm。这是一种典型的聚类算法,实现对原始样本数据的聚类分群。接着,将k-Means Algorithm应用到RBF Network中,选择合适数量的中心点,得到更好的分类模型。最后,我们列举了几个在实际中使用k-Means和RBF Network的例子,结果显示不同的类群k值对分类的效果影响很大。

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习技法》课程

展开阅读全文

没有更多推荐了,返回首页