空间点与直线距离算法

1. 原理推导

令空间中点A与点B组成向量 A B → \overrightarrow{AB} AB ,向量外有一点P,那么我们要求的就是P与直线 A B → \overrightarrow{AB} AB 的距离d。

连接点A与点P,得直线向量 A P → \overrightarrow{AP} AP 。将向量 A B → \overrightarrow{AB} AB A P → \overrightarrow{AP} AP 叉乘,根据向量叉乘的几何意义, ∣ A B → × A P → ∣ |\overrightarrow{AB} \times \overrightarrow{AP}| AB ×AP 实际上是一个平行四边形面积,如下图所示:

imglink1

根据平行四边形公式,很显然我们要求的d就是这个平行四边形的高,也就是:

d = ∣ A B → × A P → ∣ ∣ A B → ∣ d = \frac{|\overrightarrow{AB} \times \overrightarrow{AP}|} {|\overrightarrow{AB}|} d=AB AB ×AP

2. 具体实现

直到了原理,具体的实现就很简单了,只要套公式就可以了。其中^是个自己重载实现的求叉乘的操作:

double CalDistancePointAndLine(Vec3d &point, Vec3d &lineBegin, Vec3d &lineEnd)
{
    //直线方向向量
    Vec3d n = lineEnd -lineBegin;

    //直线上某一点的向量到点的向量
    Vec3d m = point - lineBegin;

    return (n ^ m).length() / n.length();
}

详细代码

3. 参考

  1. 空间向量如何求点到直线距离?
  2. 立体几何:如何用空间向量方法求点到直线的距离?
  3. 向量运算(叉乘几何意义)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

charlee44

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值