B2 - H - Historic Exhibition(二分图匹配+优化建图)

Problem

n个花瓶,每个花瓶有一个编号,m个台柱,台柱上下各有两个编号,当花瓶编号与台柱编号相匹配时花瓶才能放在台柱上,每个台柱上最多能放一个花瓶,求能否将所有花瓶放上台柱,输出方案。n<=1e4,m<=1e4,编号不超过1e4。

Solution

一上来想到了二分图匹配,但是如果是用花瓶直接与台柱匹配,在两边编号几乎相同的情况下边数会达到1e8,因此要优化建图,用编号与花瓶匹配,这样中间的边不超过2m。
具体来说,源点向编号连当连容量为前编号出现次数的边,编号向有次编号的台柱连容量为1的边,台柱向汇点连容量为1的边。
注意,得用dinic,匈牙利的时间复杂度是基于点的。

Code

#include <bits/stdc++.h>
using namespace std;
const int maxn=10005,inf=1e8;
int cnt=-1,last[maxn*2],n,m,tong0[maxn*2],t=20007,ceng[maxn*2],s=0,cur[maxn*2],a[maxn*2];
struct edge{
    int v,next,w;
}e[maxn*3000];
void add(int u,int v,int w)
{
    if(cnt>=30000000) return ;
    e[++cnt].v=v;
    e[cnt].w=w;
    e[cnt].next=last[u];
    last[u]=cnt;
}
vector<int>tong[maxn*2];
queue<int>qq[maxn*2];
bool bfs()
{
    queue<int>q;
    q.push(s);
    memset(ceng,0,sizeof(ceng));
    ceng[s]=1;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=last[u];i!=-1;i=e[i].next)
        {
            int v=e[i].v,w=e[i].w;
            if(!ceng[v]&&w)
            {
                ceng[v]=ceng[u]+1;
                q.push(v);
            }
        }
    }

    return ceng[t]!=0;
}
int dfs(int u,int dist)
{
    if(u==t)
        return dist;
    int flow=0,f;
    for(int i=cur[u];i!=-1;i=e[i].next)
    {
        int v=e[i].v,w=e[i].w;
        cur[u]=e[i].next;
        if(ceng[v]==ceng[u]+1&&w>0&&(f=dfs(v,min(dist,w))))
        {
            e[i].w-=f;
            e[i^1].w+=f;
            flow+=f;
            dist-=f;
            if(dist==0) break;
        }
    }
    return flow;
}
int dinic()
{
    int flow = 0;
    while(bfs())
    {

        for(int i=0;i<=maxn*2;i++) cur[i]=last[i];
        cur[t]=last[t];
        flow+=dfs(s,inf);
    }
    return flow;
}
int main()
{
//    freopen("a.txt","r",stdin);
    memset(last,-1,sizeof(last));
    cin>>n>>m;
    for(int i=1,a,b;i<=n;i++)
    {
        scanf("%d%d",&a,&b);
        tong[a].push_back(i);
        tong[b].push_back(i);
        add(i+maxn,t,1);
        add(t,i+maxn,0);
    }
    for(int i=1,p;i<=m;i++)
    {
        scanf("%d",&p);
        a[i]=p;
        tong0[p]++;
    }
    for(int i=1;i<=10000;i++)
    {

        if(tong0[i])
        {
            for(int j=0;j<tong[i].size();j++)
            {
                add(i,tong[i][j]+maxn,1);
                add(tong[i][j]+maxn,i,0);
            }
            add(0,i,tong0[i]);
            add(i,0,0);
        }
    }
    int flow=dinic();
    if(flow!=m)
        cout<<"impossible";
    else{
        for(int i=1;i<=10000;i++)
        {
            for(int j=last[i];j!=-1;j=e[j].next)
            {
                int v=e[j].v,w=e[j].w;
                if(!w)
                    qq[i].push(v-maxn);
            }
        }
        for(int i=1;i<=m;i++)
        {
            if(!qq[a[i]].empty())
            {
                cout<<qq[a[i]].front()<<endl;
                qq[a[i]].pop();
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈希表扁豆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值