Problem
n个花瓶,每个花瓶有一个编号,m个台柱,台柱上下各有两个编号,当花瓶编号与台柱编号相匹配时花瓶才能放在台柱上,每个台柱上最多能放一个花瓶,求能否将所有花瓶放上台柱,输出方案。n<=1e4,m<=1e4,编号不超过1e4。
Solution
一上来想到了二分图匹配,但是如果是用花瓶直接与台柱匹配,在两边编号几乎相同的情况下边数会达到1e8,因此要优化建图,用编号与花瓶匹配,这样中间的边不超过2m。
具体来说,源点向编号连当连容量为前编号出现次数的边,编号向有次编号的台柱连容量为1的边,台柱向汇点连容量为1的边。
注意,得用dinic,匈牙利的时间复杂度是基于点的。
Code
#include <bits/stdc++.h>
using namespace std;
const int maxn=10005,inf=1e8;
int cnt=-1,last[maxn*2],n,m,tong0[maxn*2],t=20007,ceng[maxn*2],s=0,cur[maxn*2],a[maxn*2];
struct edge{
int v,next,w;
}e[maxn*3000];
void add(int u,int v,int w)
{
if(cnt>=30000000) return ;
e[++cnt].v=v;
e[cnt].w=w;
e[cnt].next=last[u];
last[u]=cnt;
}
vector<int>tong[maxn*2];
queue<int>qq[maxn*2];
bool bfs()
{
queue<int>q;
q.push(s);
memset(ceng,0,sizeof(ceng));
ceng[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=last[u];i!=-1;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(!ceng[v]&&w)
{
ceng[v]=ceng[u]+1;
q.push(v);
}
}
}
return ceng[t]!=0;
}
int dfs(int u,int dist)
{
if(u==t)
return dist;
int flow=0,f;
for(int i=cur[u];i!=-1;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
cur[u]=e[i].next;
if(ceng[v]==ceng[u]+1&&w>0&&(f=dfs(v,min(dist,w))))
{
e[i].w-=f;
e[i^1].w+=f;
flow+=f;
dist-=f;
if(dist==0) break;
}
}
return flow;
}
int dinic()
{
int flow = 0;
while(bfs())
{
for(int i=0;i<=maxn*2;i++) cur[i]=last[i];
cur[t]=last[t];
flow+=dfs(s,inf);
}
return flow;
}
int main()
{
// freopen("a.txt","r",stdin);
memset(last,-1,sizeof(last));
cin>>n>>m;
for(int i=1,a,b;i<=n;i++)
{
scanf("%d%d",&a,&b);
tong[a].push_back(i);
tong[b].push_back(i);
add(i+maxn,t,1);
add(t,i+maxn,0);
}
for(int i=1,p;i<=m;i++)
{
scanf("%d",&p);
a[i]=p;
tong0[p]++;
}
for(int i=1;i<=10000;i++)
{
if(tong0[i])
{
for(int j=0;j<tong[i].size();j++)
{
add(i,tong[i][j]+maxn,1);
add(tong[i][j]+maxn,i,0);
}
add(0,i,tong0[i]);
add(i,0,0);
}
}
int flow=dinic();
if(flow!=m)
cout<<"impossible";
else{
for(int i=1;i<=10000;i++)
{
for(int j=last[i];j!=-1;j=e[j].next)
{
int v=e[j].v,w=e[j].w;
if(!w)
qq[i].push(v-maxn);
}
}
for(int i=1;i<=m;i++)
{
if(!qq[a[i]].empty())
{
cout<<qq[a[i]].front()<<endl;
qq[a[i]].pop();
}
}
}
return 0;
}