CINTA作业六

1、设 G 是 群,H 是 G 的子群。 ∀ g 1 , g 2 ∈ G , 则 g 1 H = g 2 H 当 且 仅 当 g − 1 g 2 属 于 H 。 \forall g_1,g_2 \in G, 则 g_1H = g_2H 当且仅当 g^{-1}g_2 属于 H。 g1g2Gg1H=g2Hg1g2H

如果 g 1 H = g 2 H g_1\mathbb H=g_2\mathbb H g1H=g2H,则存在 h 1 、 h 2 ∈ H h_1、h_2\in\mathbb H h1h2H,使得 g 1 h 1 = g 2 h 2 g_1h_1=g_2h_2 g1h1=g2h2
故有: g 1 − 1 g 1 h 1 = g 1 − 1 g 2 h 2 g_1^{-1}g_1h_1=g_1^{-1}g_2h_2 g11g1h1=g11g2h2
g 1 − 1 g 1 h 1 h 2 − 2 = g 1 − 1 g 2 h 2 h 2 − 1 g_1^{-1}g_1h_1h_2^{-2}=g_1^{-1}g_2h_2h_2^{-1} g11g1h1h22=g11g2h2h21
e h 1 h 2 − 1 = g 1 − 1 g 2 e eh_1h_2^{-1}=g_1^{-1}g_2e eh1h21=g11g2e
g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in\mathbb H g11g2H
如果 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in\mathbb H g11g2H,又 h 1 = g 1 − 1 g 2 ∈ H h_1=g_1^{-1}g_2\in\mathbb H h1=g11g2H h 2 = e ∈ H h_2=e\in\mathbb H h2=eH
则有: g 1 h 1 = g 1 g 1 − 1 g 2 = e g 2 = g 2 h 2 g_1h_1=g_1g_1^{-1}g_2=eg_2=g_2h_2 g1h1=g1g11g2=eg2=g2h2
所以: g 1 H = g 2 H g_1\mathbb H=g_2\mathbb H g1H=g2H

3、如果 G 是群,H 是群 G 的子群,且 [G:H] = 2, 请证明对任意 g 属于 G ,gH = Hg

(1)若 g ∈ H g\in\mathbb H gH,则 g H = H = H g g\mathbb H=\mathbb H=\mathbb Hg gH=H=Hg
(2)若 g ∉ H g\notin\mathbb H g/H,因为 [ G : H ] = 2 [\mathbb G:\mathbb H]=2 [G:H]=2
所以存在 H ′ = G − H \mathbb H'=\mathbb G-\mathbb H H=GH
因为 g ∉ H g\notin\mathbb H g/H,所以 g h ∉ H 但 g h ∈ H ′ gh\notin\mathbb H但gh\in\mathbb H' gh/HghH h g ∉ H 但 h g ∈ H ′ hg\notin\mathbb H但hg\in\mathbb H' hg/HhgH
所以 g H = H ′ , H g = H ′ g\mathbb H=\mathbb H',\mathbb Hg=\mathbb H' gH=HHg=H
所以 g H = H g g\mathbb H=\mathbb Hg gH=Hg

4、如果群 H 是群 G 的真子群,即存在 g 属于 G 但是 g 不属于 H。 请证明 |H| 小于等于 |G|/2

因为H是群G的真子群,且存在 g ∈ G 但 是 g ∉ H g\in\mathbb G但是g\notin\mathbb H gGg/H
所以 ∣ G ∣ ∣ H ∣ = [ G : H ] ≥ 2 \frac {|\mathbb G|}{|\mathbb H|}=[\mathbb G:\mathbb H]\ge2 HG=[G:H]2
∣ H ∣ ≤ ∣ G ∣ 2 |\mathbb H|\le\frac {|\mathbb G|}{2} H2G

5、设 G 是阶为 pq 的群,其中 p 和 q 是素数。请证明 G 的任意真子群是循环群。

设G的一个真子群为H,即存在 g ∈ G 且 g ∉ H g\in\mathbb G且g\notin\mathbb H gGg/H,则有推论8.1得: o r d ( g ) ∣ ∣ G ∣ ord(g)||\mathbb G| ord(g)G
o r d ( g ) ∣ p g ord(g)|pg ord(g)pg
∣ H ∣ = n |\mathbb H|=n H=n,由拉格朗日定理得: n ∣ p g n|pg npg
g ∉ H , 故 n ≠ o r d ( g ) g\notin\mathbb H,故n\ne ord(g) g/Hn=ord(g)
g ∈ H ′ , ∣ H ′ ∣ = m , 则 m ∣ p q 。 g\in\mathbb H',|\mathbb H'|=m,则m|pq。 gH,H=m,mpq
m ≠ n m\ne n m=n
所以 m = p , n = q 或 m = q , n = p m=p,n=q或m=q,n=p m=p,n=qm=q,n=p
G = H + H ′ 且 ∣ H ∣ 和 ∣ H ′ ∣ 均 为 素 数 \mathbb G=\mathbb H+\mathbb H'且|\mathbb H|和|\mathbb H'|均为素数 G=H+HHH
由推论8.2得: H 和 H ′ 均 为 循 环 群 \mathbb H和\mathbb H'均为循环群 HH

7、使用群论的方法重新证明费尔马小定理和欧拉定理。

(1)费马小定理
G \mathbb G G是阶为n的有限群,则对任意群元 a ∈ G a\in\mathbb G aG,令a的阶为k,由推论8.1得: k ∣ n k|n kn
又因为 a k = e a^k=e ak=e
所以 a n = a m k = e m = e a^n=a^{mk}=e^m=e an=amk=em=e

(2)欧拉定理
G \mathbb G G是阶为 ϕ ( n ) \phi (n) ϕ(n)的有限群,则对任意群元 a ∈ G a\in\mathbb G aG,令a的阶为k,由推论8.1得: k ∣ ϕ ( n ) k|\phi (n) kϕ(n)
又因为 a k = e a^k=e ak=e
所以 a n = a m k = e m = e a^n=a^{mk}=e^m=e an=amk=em=e

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值