【零基础机器学习】机器学习中的正则项(图文详解)


更多代码Gitee主页:https://gitee.com/GZHzzz
博客主页CSDN:https://blog.csdn.net/gzhzzaa

写在前面

  • 在机器学习中我们时常会遇到模型过拟合的问题,这是由于我们所得到的的模型复杂度过大,过于完美地拟合了训练数据,也就导致模型在预测训练数据时效果很好而预测新数据时效果很差。解决过拟合问题的一个典型方法即是: 正 则 化 正则化 !😊
    在这里插入图片描述

损失函数

经验风险

  • 经验风险最小化(empirical risk minimization,ERM)策略认为,经验风险最小的模型就是最优模型。根据这一策略求最优模型即是求解最优问题:

在这里插入图片描述

  • 当样本容量足够大时,经验风险最小化能保证很好的学习效果。 极 大 似 然 估 计 ( m a x i m u m l i k e l i h o o d e s t i m a t i o n ) 极大似然估计(maximum likelihood estimation)
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北郭zz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值