更多代码: Gitee主页:https://gitee.com/GZHzzz
博客主页: CSDN:https://blog.csdn.net/gzhzzaa
写在前面
- 在机器学习中我们时常会遇到
模型过拟合
的问题,这是由于我们所得到的的模型复杂度过大,过于完美地拟合了训练数据,也就导致模型在预测训练数据时效果很好而预测新数据时效果很差。解决过拟合问题的一个典型方法即是: 正 则 化 正则化 正则化!😊
损失函数
经验风险
- 经验风险最小化(empirical risk minimization,ERM)策略认为,经验风险最小的模型就是最优模型。根据这一策略求最优模型即是求解最优问题:
- 当样本容量
足够大
时,经验风险最小化能保证很好的学习效果。 极 大 似 然 估 计 ( m a x i m u m l i k e l i h o o d e s t i m a t i o n ) 极大似然估计(maximum likelihood estimation)