量子力学+智能体!基于ϕ4格点场论的金融市场模拟

Lattice ϕ4 field theory as a multi-agent system of financial markets

量子力学和智能体都是时下最热门的话题,两者的碰撞在金融市场能擦出什么样的火花呢。本文针对这一问题进行了深入探索。

论文地址:https://arxiv.org/pdf/2411.15813

摘要

本文提出了一种ϕ4格点场论,模拟金融市场的特征,如收益的厚尾分布和波动聚集。每个格点代表一个代理,代理的买卖决策受邻居行为和多数或少数意见的影响。通过马尔可夫场结构进行ϕ4概率分布的构造性分解,并使用Ferrenberg-Swendsen采样步骤重组。数值验证表明,该多代理ϕ4场论能再现FTSE 100伦敦证券交易所指数的实证数据行为。并讨论了ϕ4场论中连续自由度的存在,提供了超越伊辛模型的多代理系统的表现能力。

简介

统计物理为定量金融提供了数学框架,因金融价格表现出类似于统计物理中多体相互作用的普遍行为。研究通常考虑两类代理人:基本面投资者(根据资产的基本价值决策)和技术分析者(基于趋势和他人行为决策),其共存导致羊群效应。自旋模型(如伊辛模型)用于模拟相互作用代理人的系统,揭示集体买卖行为的相变。

本文引入ϕ4格点标量场理论作为多代理系统,描述金融市场中买卖动态及预期泡沫和崩盘的出现。代理人的决策通过连续值表示,包含模仿邻居和遵循多数或少数意见的相互作用。采用Gibbs采样方法,利用ϕ4理论的马尔可夫性质引入竞争性相互作用。探索ϕ4理论是否能再现金融市场的风格化事实,如收益的厚尾分布和波动聚集。

将结果与FTSE 100指数的实证数据进行比较,讨论ϕ4理论在建模实证金融数据中的扩展潜力。研究ϕ4理论能否重现与实证研究一致的临界指数,强调其相较于伊辛模型的更高表现能力。

构建分解的φ4理论

ϕ4标量场理论在二维格点上描述,具有自发破缺Z_2对称性,λ>0时存在二阶相变。在极限λ→∞和m→−∞时,系统简化为伊辛模型。

使用螺旋边界条件,系统的玻尔兹曼概率分布为

Z为分区函数。

采用Gibbs采样和Ferrenberg-Swendsen方法对概率分布进行构造性分解。ϕ4理论是马尔可夫随机场,满足局部马尔可夫性质,允许条件概率分布的Gibbs采样。条件概率分布通过邻居的状态进行表达,涉及高斯分布的均值和标准差。

ϕ4 理论的条件概率分布 p(ϕ i | ϕ j,j ∈n i) 可以通过 Ferrenberg-Swendsen 接受或拒绝采样步骤重组。首先从高斯分布 N(µ, σ²) 中采样提议的自由度 ϕ ′ i。然后从均匀分布 U[0, 1) 中抽取随机数 u,并计算 f2(ϕ ′ i)。如果 f2(ϕ ′ i) > u,则接受 ϕ ′ i 作为有效的自由度。这种重组仅在 c2 > 0 和 c3 足够小的情况下有效。该框架可用于采样传统的 ϕ4 理论的概率分布。研究目标是将这些概念扩展到多智能体 ϕ4 理论,以模拟金融市场中的交互代理。

作为金融市场模型的多主体φ4理论

在金融市场中,代理人之间的互动可分为两种:模仿邻居的行为导致的羊群效应,以及对多数或少数意见的偏好。羊群效应通过Z2对称性破缺相变在格点模型中体现,代理人的决策(买或卖)通过集体对称性编码。代理人可能会选择与少数意见对齐,以避免潜在的市场崩溃或利用低估股票的机会。

引入一个新项h,类似于伊辛模型,适用于连续自由度的ϕ4理论,耦合虚拟场a与强度磁化的绝对值。该项h影响条件概率分布,修正均值µ的计算。ϕi的符号表示买卖决策,幅度|ϕi|反映代理人对价格变化的信心。ϕ4理论能够表达代理人期望的显著差异,区别于传统的二元自旋模型。h项的引入可能导致反铁磁相互作用,产生复杂的动态行为。

风格化的φ4金融市场的事实

实施Gibbs采样,参数为m² = -3.0, λ = 0.7, a = 5.0,获得64×64格子的多代理ϕ⁴模型配置,经过平衡后生成10⁵个配置。该模型在破对称相中,旨在验证其能否重现FTSE 100指数的实证数据,从1984年10月1日到2024年9月30日的收盘值。

经过20500、28311和30000次蒙特卡洛扫荡后,观察到不同的相态:20500次时出现亚稳态,28311次时转为混沌相,30000次时再次出现亚稳态。计算股票价格的对数收益率r(t)和ϕ⁴理论的收益率rϕ⁴(t),两者均显示出间歇性大波动,表明模型具有足够的代表性。观察到收益率的肥尾分布,κϕ⁴ = 3.37,κFTSE = 10.42,均偏离高斯分布,且κ值依赖于样本大小和耦合参数。绝对收益的累积分布函数显示出幂律行为,临界指数θ在2到4之间,ϕ⁴模型的结果与θ = 2.3的线性比较。

观察到金融市场中存在聚集波动性,绝对收益|r(t)|在较长时间内呈正相关,且自相关性呈幂律衰减。从图2可以推断出聚集阶段的存在。图5展示了从多代理ϕ4理论获得的|r ϕ4 (t)|的自相关函数,显示出与实证数据相似的自相关尺度。

ϕ4格点场理论能够再现金融市场的非平凡特征,且有潜力扩展以建模实证金融数据。

总结

本文提出了一个具有挫败动态的ϕ4格点场论作为多代理系统,以重现金融市场的风格化特征,如收益的厚尾分布和波动聚集。每个格点代表一个代理,分为基本面交易者(依据资产基本价值决策)和技术分析交易者(依据趋势决策)。

该模型在定性上能够重现FTSE 100伦敦证券交易所指数的实证金融数据行为,表明其具有足够的表征能力,可扩展至实际定量研究问题。可通过寻找最准确的耦合参数m²和λ,定义破缺对称相的系统,解决逆问题。考虑耦合参数的不均匀性和代理间的无序交互,可能使模型更具表征能力。

ϕ4格点场论具有连续自由度,适用于多代理系统的期望表示。ϕ4理论是伊辛模型的推广,能在相变上与伊辛模型同类。该理论在λ=0时可交叉到高斯模型。ϕ4理论在多代理系统中的应用潜力超越金融市场简化模型。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值