OpenCV-模板匹配与霍夫变换

本文介绍了OpenCV中的模板匹配技术,包括其基础概念、实现过程和局限性。同时,深入探讨了霍夫变换,用于检测直线和圆的特征,详细阐述了直线和圆检测的参数设置及其工作原理。
摘要由CSDN通过智能技术生成

模板匹配基础

模板匹配就是在大图中找小图,也就说在一幅图像中寻找另一幅模板图像的位置。
在这里插入图片描述
在OpenCV内,模板匹配是使用函数cv2.matchTemplate()实现的。该函数的语法格式为:

result=cv2.matchTemplate(image,temp1,method[,mask])

image为原始图像,必须是8位或者32位的浮点型图像。
temp1为模板图像。它的尺寸必须小于或等于原始图像,并且与原始图像具有同样的类型。
method为匹配方法。该参数通过TemplateMatchModes实现,有6种可能的值
差值平方和匹配

 CV_TM_SQDIFF

标准化差值平方和匹配

 CV_TM_SQDIFF_NORMED

相关匹配

CV_TM_CCORR

标准相关匹配

 CV_TM_CCORR_NORMED

相关匹配

CV_TM_CCOEFF

标准相关匹配

CV_TM_CCOEFF_NORMED

minMaxLoc

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(src)

min_val为返回的最小值
max_val为返回的最大值
min_loc为最小值的位置
Max_loc为最大值的位置
模板匹配的操作方法是将模板图像B在图像A上滑动,遍历所有像素以完成匹配。

模板匹配的实现过程

工作原理:在带检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。
局限性:
它只能进行平行移动,若原图像中的匹配目标发
生旋转或大小变化,该算法无效。
在这里插入图片描述

import cv2
import numpy as np

#Matplotlib是RGB
import matplotlib.pyplot as plt
%matplotlib inline 

def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey()
    cv2.destroyAllWindows()

template = cv2.imread("lena_eye.jpg")
cv_show("template",template)

img = cv2.imread("lena.jpg")
cv_show("img", img)

h, w = template.shape[:2]

在这里插入图片描述

匹配过程

res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = min_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
imgcpy = img.copy()
cv2.rectangle(imgcpy, top_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值