模板匹配基础
模板匹配就是在大图中找小图,也就说在一幅图像中寻找另一幅模板图像的位置。
在OpenCV内,模板匹配是使用函数cv2.matchTemplate()实现的。该函数的语法格式为:
result=cv2.matchTemplate(image,temp1,method[,mask])
image为原始图像,必须是8位或者32位的浮点型图像。
temp1为模板图像。它的尺寸必须小于或等于原始图像,并且与原始图像具有同样的类型。
method为匹配方法。该参数通过TemplateMatchModes实现,有6种可能的值
差值平方和匹配
CV_TM_SQDIFF
标准化差值平方和匹配
CV_TM_SQDIFF_NORMED
相关匹配
CV_TM_CCORR
标准相关匹配
CV_TM_CCORR_NORMED
相关匹配
CV_TM_CCOEFF
标准相关匹配
CV_TM_CCOEFF_NORMED
minMaxLoc
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(src)
min_val为返回的最小值
max_val为返回的最大值
min_loc为最小值的位置
Max_loc为最大值的位置
模板匹配的操作方法是将模板图像B在图像A上滑动,遍历所有像素以完成匹配。
模板匹配的实现过程
工作原理:在带检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。
局限性:
它只能进行平行移动,若原图像中的匹配目标发
生旋转或大小变化,该算法无效。
import cv2
import numpy as np
#Matplotlib是RGB
import matplotlib.pyplot as plt
%matplotlib inline
def cv_show(name, img):
cv2.imshow(name, img)
cv2.waitKey()
cv2.destroyAllWindows()
template = cv2.imread("lena_eye.jpg")
cv_show("template",template)
img = cv2.imread("lena.jpg")
cv_show("img", img)
h, w = template.shape[:2]
匹配过程
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = min_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
imgcpy = img.copy()
cv2.rectangle(imgcpy, top_