ISP-ASF

1. 概述

ASF–adaptive spatial filter,自适应空间滤波器

ASF是一种自适应滤波器,可以根据边缘的检测对图像的不同部分进行平滑和锐化。它平滑细节较少的区域,以消除噪声和锐化边缘,以增加图像的清晰度。

1.1 高频与低频区分:

如何区分图像的高频信息和低频信息,所谓高频就是该像素点与周围像素差异较大,常见于一副图像的边缘细节和噪声等;而低频就是该像素点与周围像素差异变化不大,一般体现为图像的平坦区;

1.2. 高通滤波器:

高通滤波器指的是允许高于某一阈值的频率信息通过,过滤掉低于这一阈值的频率信息,从而大大衰减低频率的一种滤波器。在图像处理中,过滤频率信息采用的是傅里叶变换,把图像从空域转为频域进行处理。
在这里插入图片描述
从这个结果图像可以知道,高通滤波器将低频信息过滤后就只有高频信息,高频一般是图像的边缘和噪点等。高通滤波器就是调整滤波模板,不同的滤波模板过滤的频率是不一样的,高通一般是过滤中心低频信息。知道高通滤波的过程后,低通滤波器就会很简单了。

1.3 低通滤波器

低通滤波器是和高通滤波器正好相反,低通滤波器是允许低频信息通过,滤掉高频信息,造成的结果就是图像变模糊了,一般用于去噪,因为噪点是高频信息。简单的说,就是靠近频谱图中心的低频部分给保留,远离频谱图中心的高频部分给去除掉。但是这会影响图像的清晰度。

同理低通滤波器给一个滤波模板,将频谱中心保留,四周去掉,得到的低通滤波器后图像为如下
在这里插入图片描述

可以看出图像变模糊了,根据给出的频率滤波模板的不同模糊程度也会不一样。

以上都是基于频率滤波,根据傅里叶变换后的频谱进行滤波,再逆变换达到滤除不同频率得到目标图像。关于高通滤波和低通滤波,除了频率滤波,也可以采取空间滤波等,如常见的均值滤波和高斯滤波也可以去除高频信息达到平滑边缘的目的;拉普拉斯算子和梯度、Sobel等可以从空间上滤除低频信息得到边缘信息,可以利用其锐化边缘等。

2 ASF的作用:

(1)降噪 (2)边缘锐化

两种处理方式之间相互冲突
降噪(低通滤波)使图像模糊
锐化(高通滤波)会增加噪点

3 ASF的优点:

1.精锐化边缘
2.为平坦区降噪
3.可以使用提供的参数(例如平滑度和锐化度) 进行各种调整.
4.可以分别对水平边缘和竖直边缘进行不同成都的锐化

4 ASF block diagram:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 参数

(1)layer_1_hpf_symmetr ic_coeff_tab : 调整kernels filter 调整滤波核. must tune

hpf–high pass filter 高通滤波
在这里插入图片描述
薄滤波核(Thin Kernel):薄滤波核是指具有较小尺寸或细的特征的滤波核。它通常用于捕捉细节或边缘的高频信息,以强调图像中的细线条或细节。

中等滤波核(Mid Kernel):中等滤波核指的是具有中等尺寸的滤波核。它在平衡细节和平滑效果之间提供了一种中等程度的滤波效果。中等滤波核可以用于多种图像处理任务,如平滑图像、去噪或细节增强。

粗滤波核(Thick Kernel):粗滤波核是指具有较大尺寸或粗的特征的滤波核。它主要用于平滑图像或提取较大的结构特征,可以减少图像中的细节并增强粗略的形状或轮廓。

(2) layer_1_lpf_symmetr ic_coeff_tab 保持不变

lpf – low pass filter

高通滤波器(High Pass Filter)在图像处理和信号处理中具有以下作用:
1.去除低频信息:高通滤波器可以滤除图像或信号中的低频成分。低频信息通常对应于图像中的平坦区域或慢变化的信号部分。通过去除低频成分,高通滤波器可以突出图像或信号中的细节、边缘和快速变化的特征。
2.强调边缘和细节:高通滤波器对于边缘检测和图像增强非常有用。边缘通常对应于图像中颜色或灰度值快速变化的区域。通过滤除低频信息,高通滤波器可以增强图像中的边缘,使其更加清晰和突出。
3.噪声抑制:高通滤波器可以抑制图像或信号中的一些低频噪声。噪声通常具有较低的频率成分,而信号通常具有较高的频率成分。通过选择合适的高通滤波器参数,可以滤除噪声的低频成分,从而减少图像或信号中的噪声干扰。
4.频域分析:高通滤波器在频域分析中也有重要的作用。通过将信号或图像转换到频域,可以应用高通滤波器来分析信号的频率分布,检测周期性或高频成分

低通滤波器(Low Pass Filter)在图像处理和信号处理中具有以下作用:
1.平滑图像或信号:低通滤波器可以平滑图像或信号中的高频成分。高频成分通常对应于图像中的细节、噪声或快速变化的信号部分。通过滤除高频成分,低通滤波器可以减少图像或信号的变化,使其变得更加平滑和连续。
2.去除噪声:低通滤波器可以滤除图像或信号中的高频噪声。高频噪声通常具有较快的变化率,通过选择适当的低通滤波器参数,可以去除这些噪声成分,从而减少图像或信号中的噪声干扰。
3.降低带宽:低通滤波器可以限制信号的频率范围,从而降低信号的带宽。这对于一些通信系统或数据传输中很有用,可以减少信号的传输带宽需求,提高传输效率。
4.信号重建:低通滤波器可以用于信号重建或还原。当信号经过采样或压缩导致频率丢失时,低通滤波器可以恢复信号的低频成分,以近似原始信号。

(3)layer_1_activity_normalization_lut

level-based lut 基准级别 标准查找表 校准归一化活动
调整以使活动值归一化:活动值归一化到0到0.99609375之间。识别活动数据中的最小值和最大值。这些值将用于归一化。
数值范围:[0.0,0.99609375] (64 entries)

该查找表(LUT)被调整用于减少图像中暗区域的噪声。
使用较小的归一化值会降低归一化活动因子,从而提供暗噪声抑制,但也会在暗边缘区域创建较少的对比度。避免在此查找表(LUT)中使用接近零的值。

(4)layer_1_weight_modulation_lut

描述:activity-based Lut
当锐化值幅度小于软阈值时,用于控制斜率(输出/输入)的标准化基于活动的LUT
tuning:增加此值可以增加sharpening
tuning: 值越高锐化更高

(5)layer_1_gain_positive_lut

描述:Level-based sharpening gain LUT for positive halos 基于级别的正边缘(正高光)增强增益查找表
Layer 1 Gain Positive Lut Table 影响亮区白色或较浅的边缘,值越大 ,锐化越强

(6)layer_1_gain_negative_lut

描述:Level-based sharpening gain LUT fornegative halos 基于级别的正边缘(负高光)增强增益查找表

Layer 1 Gain Negative Lut Table影响暗区黑色或较深的边缘,值越大,锐化越强


Positive halos(正边缘)指的是在边缘增强或滤波过程中,边缘或高频信息被增强并产生的明亮区域或光晕效果。它们通常表示增强的边缘、纹理或图像细节,使它们更加醒目和突出。

Negative halos(负边缘)指的是在边缘增强或滤波过程中,边缘周围产生的暗区域或光晕效果。它们通常是由于边缘增强算法中的过渡效应或非线性处理引起的,可能会导致边缘附近的图像区域变暗或产生不自然的效果。


(8)layer_1_gain_weight_lut

描述:Normalized activity-based sharpening gain LUT/归一化活动基础的增强增益查找表

tuning: 增加这个可以增强sharpening .

Layer 1 Gain weight Lut 影响输出图像的锐度,表示归一化活动的条目。 值越大,图像信息密集区域锐度越高。 曲线斜率越大,这种曲线形状会增加细节,同时会增大噪声。 相反,斜率小,减少图像细节并会降低噪声.

(9)layer_1_gamma_corrected_luma_target

描述: Luma target after gamma to control level-based sharpening/经过伽马校正后的亮度目标,用于控制基于水平的锐化。通过根据经过伽马校正后的亮度目标选择性地应用锐化技术,可以对锐化效果进行微调和控制,以增强所需的图像细节和边缘。

tuning:更高的值,更少的gain_cap正增益


较高的值,对正增益的增益上限进行降低。

在图像处理的背景下,当提到对正增益设置"增益上限"(gain_cap)时,它表示对正增益数值设定的最大限制或阈值。通过调整这个限制,可以控制对图像中正增益区域的增强程度。

它暗示当对正增益的增益上限设置较高的值时,会导致对正增益区域的增强程度减少。换句话说,增加增益上限限制了增强的程度,使得对正增益区域的增强更加保守或受限。

这种调整可以细调保留图像细节和防止在较亮或高增益区域过度增强之间的平衡。通过降低对正增益的增益上限,可以限制这些区域的增强程度,保持更加平衡和可控的增强效果。

(10)layer_1_gain_cap

描述:

"Upper cap of sharpening gain"指的是锐化增益的最大上限值。在图像处理中,锐化增益用于增强图像中的边缘和细节。通过调整锐化增益的上限,可以控制增强效果的强度。

当设置一个较高的锐化增益的上限时,表示对增强效果施加了更高的限制。这意味着锐化增益的增强效果将受到限制,以避免过度增强导致图像出现不自然或伪影的问题。

调整锐化增益的上限可以平衡保留图像细节和防止锐化过度增强之间的关系。通过设置适当的锐化增益上限,可以确保增强效果适度,并获得更好的图像质量和视觉效果。

需要注意的是,锐化增益的上限值需要根据具体的图像和应用场景进行调整,以满足所需的增强效果和视觉感知的要求

tuning: 值越大锐化强度越大


过度的锐化可能会导致图像出现伪影、噪点增加或过度强调的效果。因此,在调整锐化参数时,需要权衡增强效果和图像质量之间的平衡,以获得最佳的视觉结果。根据具体的图像和应用需求,可能需要进行适当的参数调整,以避免过度锐化带来的不良影响。

(11)layer_1_clamp_ul

描述: Manual fixed positive clamping level sharpening/手动固定正增益裁剪水平的锐化

锐化是一种增强图像边缘和细节的技术,而正增益是应用于图像中边缘和细节增强的增益值。裁剪水平则用于限制正增益的范围,以避免过度增强和失真。

在手动固定正增益裁剪水平的锐化中,用户手动设定正增益的上限或阈值,超过这个阈值的增益将被裁剪或限制。这样可以控制锐化效果的强度,防止过度增强造成图像伪影、噪点或不自然的效果。

tuning:Clamp to higher values for more edge enhancement 将值限制在较高范围以获得更强的边缘增强效果。

(12)layer_1_clamp_ll

描述: Manual fixed negative clamping level sharpening/手动固定负增益裁剪水平的锐化技术。

锐化是一种增强图像边缘和细节的技术,而负增益是应用于图像中边缘和细节增强的负增益值。裁剪水平则用于限制正增益的范围,以避免过度增强和失真。

在手动固定负增益裁剪水平的锐化中,用户手动设定负增益的下限或阈值,低于这个阈值的增益将被裁剪或限制。这样可以控制锐化效果的强度,防止过度增强造成图像伪影、噪点或不自然的效果

tuning:Clamp to higher values for more edge enhancement 将值限制在较高范围以获得更强的边缘增强效果

(13)layer_1_activity_clamp_threshold

描述:Static clamp of 5 x 5 band-passfilter output(activity) 对5x5带通滤波器输出(活动)进行静态裁剪
“static clamp”(静态裁剪)是一种技术,用于限制某个变量或参数的取值范围。而"5 x 5 band-pass filter"(5x5带通滤波器)是一种滤波器,用于提取图像中特定频率范围内的信息。

它指出对5x5带通滤波器输出(活动)进行静态裁剪。这意味着对滤波器输出的活动值进行限制,使其取值在某个固定的范围内。
静态裁剪可以用于控制图像中的活动程度,以获得所需的效果。通过设置裁剪阈值,可以限制活动值的范围,以去除噪点、减少过度增强或限制图像中某些区域的增强程度。
需要根据具体的应用需求和图像特性来确定裁剪的阈值。通过静态裁剪5x5带通滤波器的输出活动,可以控制增强效果,并获得更好的图像质量和视觉效果。
tuning: 值越高,锐化越强

(14)layer_1_median_blend_upper_offset

描述:Upper offset ofmedian blend 中值混合的上偏移量
在图像处理中,“median blend”(中值混合)是一种将多个图像或图像通道进行混合的技术。它通过计算像素值的中值来生成最终的混合结果。
而"upper offset"(上偏移量)是指对中值混合结果进行调整或修正的参数。上偏移量可以用来增加或减少混合结果中的像素值,从而改变混合效果。
它指的是对中值混合结果进行上偏移量的调整。通过增加上偏移量,可以使混合结果中的像素值整体上升,从而增强图像的亮度或对比度。相反,通过减少上偏移量,可以使混合结果中的像素值整体下降,从而降低图像的亮度或对比度。
tuning: 值越高,锐化越强

(15)layer_1_median_blend_lower_offset

描述:Lower offset of median blend. Must be smaller than upper offset 中值混合的下偏移量。必须小于上偏移量。
通过减少下偏移量,可以使混合结果中的像素值整体下降,从而降低图像的亮度或对比度。通过适当调整下偏移量,可以控制混合结果的亮度范围,以获得所需的图像处理效果。
tuning: 值越高,锐化越弱

(16)layer_1_sp

描述:3 x 3 median filter smoothing percentage 3 x 3中值滤波平滑百分比
在图像处理中,“3 x 3 median filter”(3x3中值滤波器)是一种常见的滤波器,用于平滑图像并去除噪点。它通过计算像素周围邻域的中值来替代当前像素的值,从而实现平滑效果。
而"smoothing percentage"(平滑百分比)是指控制平滑程度的参数,用于调整中值滤波器的效果。它表示将多大比例的邻域像素值纳入计算中,以确定最终平滑结果。
在给定的上下文中,"3 x 3 median filter smoothing percentage"指的是在进行3x3中值滤波时,用于确定参与计算的邻域像素值所占的比例。
较高的平滑百分比将更多的邻域像素纳入计算,从而产生更平滑的结果。而较低的平滑百分比则会减少邻域像素的贡献,可能会保留更多细节和边缘信息,但平滑效果较弱。

(17)radial_activity_adj

描述:Correction factor for activity based on radial distance 基于径向距离的活动修正系数
“activity based on radial distance”(基于径向距离的活动)指的是根据图像中像素点与中心点之间的径向距离计算的活动值。
通过基于径向距离进行修正,可以根据像素点到图像中心的距离对活动值进行加权或缩放。这样可以实现根据距离远近对活动值进行不同程度的调整,从而在图像处理过程中更加准确地反映像素的活动情况。
通常,较远离中心的像素可能会获得较小的修正系数,而较接近中心的像素可能会获得较大的修正系数。
tuning:Increase to have more sharpness towards corner 增加修正系数以使角落更加锐利

(18)radial_gain_adj

描述:Correction factor for gain based on radial distance 基于径向距离的增益修正系数

通过增加修正系数,可以强调靠近图像中心的区域,增强其细节和对比度。这种基于径向距离的增益修正系数的使用可以帮助实现更加自然和平衡的图像增强效果。

tuning:Increase to have more sharpness towards corner 增加修正系数以使角落更加锐利

(19)gain_contrast_positive

描述:Contrast-based positive halo sharpening gain 基于对比度的增益,用于增强正边缘光晕的效果。

在图像处理中,“sharpening gain”(增强增益)用于增强图像的边缘和细节。而"positive halo"(正边缘光晕)指的是在增强过程中出现的光晕效果,通常表现为边缘周围的亮区域.

通过基于对比度的增益,可以根据像素的对比度水平调整边缘光晕的增强程度。较高的增益将产生更明显的正边缘光晕效果,而较低的增益则会减少或抑制光晕的出现。

这种基于对比度的正边缘增强增益可以用于改善图像的锐利度和细节,并突出边缘区域。它可以增强图像的视觉效果,使边缘更加清晰和饱满。

tuning:值越高,锐化越强

(20)gain_contrast_negative

描述:Contrast-based negative halo sharpening gain 基于对比度的增益,用于增强正边缘光晕的效果。

在图像处理中,“sharpening gain”(增强增益)用于增强图像的边缘和细节。而"negative halo"(负边缘光晕)指的是在增强过程中出现的光晕效果,通常表现为边缘周围的暗区域

通过基于对比度的增益,可以根据像素的对比度水平调整负边缘光晕的增强程度。较高的增益将产生更明显的负边缘光晕效果,而较低的增益则会减少或抑制光晕的出现。

tuning:值越高,锐化越强

(21)min_max_filter_coefficients

描述:Filter coefficientsfor 5 x 5 min and max filter 5 x 5 最小值和最大值滤波器的滤波系数

在图像处理中,最小值和最大值滤波器是常用的滤波器类型,用于平滑图像、去除噪声或检测边缘。

5 x 5 最小值滤波器使用一个 5 x 5 的滑动窗口,在每个窗口内选择像素的最小值作为输出像素的值。这样可以实现图像的平滑效果,并抑制小尺度的噪声。

5 x 5 最大值滤波器使用一个 5 x 5 的滑动窗口,在每个窗口内选择像素的最大值作为输出像素的值。这样可以突出边缘和亮区域,实现图像的增强效果

滤波器的滤波系数是指在滤波过程中窗口内每个像素的权重值。对于最小值和最大值滤波器,滤波系数通常是固定的,不需要进行调整。

tuning:值越高,锐化越强

(22)radial_anchor

描述:Anchor table(distance percentage) for radius based noise reduction 基于半径的降噪的锚定表(距离百分比)

在基于半径的降噪算法中,锚定表用于确定不同距离百分比下的降噪程度。该表指定了每个距离百分比对应的降噪强度或参数。

锚定表的目的是根据像素点到图像中心的距离百分比来调整降噪的程度。较远离中心的像素点通常受到较大的降噪影响,而接近中心的像素点通常受到较小的降噪影响。

tuning:Define the radial points 定义径向点.在图像处理和计算机视觉中,径向点指的是相对于图像中心的距离和方向确定的点。它们通常用于描述和分析图像中的特征、边缘或对象。

6 调试

  1. 设置region
  2. fine tuning 拍实物, 直接调试
  3. region data 展开asf 30 rgn data
    设置layer 1 symmetric kernel parameters
    调试layer 1 gain 强度基于level 和activity 增强边缘和纹理
    设置layer 2 kernel parameter 默认
    调试layer 2 gain strength based on level and activity 增强厚边缘和local edge
    如果出现光晕,调试gain contrast 减少边缘周围gain 强度
    如果skin dirty ,调整皮肤gain 减少sharpening on skin
    调整smoothing strength 使边缘更平滑
    调整gain contrast 出现光晕 调试clamp 钳位
  4. Click Simulate
  5. Kernel . 在kernel table 选择HPF symmetric coeff , LPF symmetric coeff 或者 activity band pass coeff ,按需要调整vale.
    6.LUT .
    Gain Lut
    Overall Gain-- 整体增益
    Shadow Boost – 暗影增强
    Highlight Boost – 亮区增强
    Negative Gain
    Negative Gain – 负增益
    Negative shadow – 负阴影
    Negative highlight – 高光阴影
    Detail Tab
    Detail – 细节
    Noise – 噪声
    Halo – 光圈
    对比度不高时, chroma edge 出现光晕,tune gain chroma . 如果边缘对齐是不自然的纹理, tune the thresholds for edge alighnment.
    如果图像有角噪声或细节较少, 请调整radial gain 和radial activity .
  6. Sigma LUT RNR 调整RNR 控制点
    四个knee points, 其中每个点都有不同的降噪值.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值