多元函数可导为什么不一定连续

多元函数可导是指 x , y x,y x,y两个方向的偏导数 ∂ z ∂ x \partial z \over \partial x xz ∂ z ∂ y \partial z \over \partial y yz 存在。
所以,多元函数可导只能说明动点 ( x , y 0 ) (x,y_0) (x,y0)(或 ( x 0 , y ) (x_0,y) (x0,y))沿x(或y)轴方向趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)
而连续需要动点从任意方向趋于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)
故多元函数可导不一定连续。

在数学分析中,特别是在多元函数的领域,"可微"、"偏导"和"偏导连续"以及"连续"这几个概念之间存在紧密的联系。 1. **可微**(Differential):如果一个多变量函数在其定义域内的一点上,其所有偏导数都存在并且该点处的函数值也存在,则称这个函数在这点上可微。这是微分学的基本概念,意味着函数在这一点附近可以用线性近似来描述。 2. **偏导数**(Partial Derivative):对于一个多元函数来说,每个自变量的导数称为对应的偏导数。比如对函数f(x, y)而言,∂f/∂x表示x对f的偏导数,∂f/∂y表示y对f的偏导数。 3. **偏导连续**(Continuous Partial Derivatives):如果一个函数的所有偏导数在某一点上都是存在的,并且这些偏导数在该点的值也是连续的,那么我们说函数在这一点具有偏导数的连续性。这是一个更弱的条件,即使函数本身可能不连续。 4. **连续性**(Continuity):对于单变量函数,如果它的图像是一个没有间断点的曲线,我们就说它是连续的。对于多变量函数,若函数值对于输入的变化是连续变化的,即在某一点的极限值等于该点的函数值,则称函数在这个点连续。 总结一下关系: - 如果一个函数在某一点既可微又偏导数连续,那么它在那一点必定是连续的。 - 反之,如果一个函数在某点连续,但偏导数不存在或不连续函数并不一定可微。 - 偏导数连续只是可微的一个必要条件,而不是充分条件,因为还要求函数值本身存在。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值