为什么多元函数可微,偏导数不一定连续?【从一元函数和多元函数类比的角度】

问题

多元函数可微,偏导数连续在网上并没有看到比较直观的理解,因此这里提出一个和一元函数类比的理解,如有不对,恳请指正。

一元函数

一元函数在某点可微,指的是该点的导数存在,然而并不能保证导数连续
例子:震荡函数
在这里插入图片描述

多元函数(以二元函数为例)

在多元函数同样,在某点可微指的是在垂直于XY平面做切平面平面和曲平面交线在某点连续且偏导数存在(做了切平面就相当于把二元化成一元,因此可以直接等同于一元函数)

而偏导数连续则是要求的是邻域中的导数性质,由一元函数中的说明我们可以知道,一点导数的存在是不能够推出邻域内导数的连续的(反例:震荡函数)。

因此,通过将二元函数化成一元函数的方法,简单说明了多元函数可微偏导数不一定连续。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值