问题
多元函数可微,偏导数连续在网上并没有看到比较直观的理解,因此这里提出一个和一元函数类比的理解,如有不对,恳请指正。
一元函数
一元函数在某点可微,指的是该点的导数存在,然而并不能保证导数连续。
例子:震荡函数
多元函数(以二元函数为例)
在多元函数同样,在某点可微指的是在垂直于XY平面做切平面,平面和曲平面交线在某点连续且偏导数存在(做了切平面就相当于把二元化成一元,因此可以直接等同于一元函数)。
而偏导数连续则是要求的是邻域中的导数性质,由一元函数中的说明我们可以知道,一点导数的存在是不能够推出邻域内导数的连续的(反例:震荡函数)。
因此,通过将二元函数化成一元函数的方法,简单说明了多元函数可微偏导数不一定连续。