【百战GAN】GAN也可以拿来做图像分割,看起来效果还不错?

本期专栏深入探讨生成对抗网络(GAN)在图像分割任务中的应用,通过详细解析算法核心思想、代码实现及模型训练过程,展示如何利用GAN进行高效图像分割。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,欢迎来到专栏《百战GAN》,在这个专栏里,我们会进行算法的核心思想讲解,代码的详解,模型的训练和测试等内容。

作者&编辑 | 言有三

本文资源与生成结果展示

本文篇幅:5600字

背景要求:会使用Python和Pytorch

附带资料:项目推荐,版本包括Pytorch+Tensorflow

同步平台:有三AI知识星球(一周内)

1 项目背景

生成对抗网络如今在计算机视觉的很多领域中都被广泛应用,图像分割是一个非常基础的任务,两者的结合会擦出什么样的火花呢?这一期我们使用GAN完成图像分割任务,本次需要做的准备工作包括:

(1) Linux系统或者windows系统,使用Linux效率更高。

(2) 安装好的Pytorch,需要GPU进行训练。

2 原理简介

图像分割任务输入是一张图像,输出是一张与图像大小相等的掩膜。要使用GAN来完成这个任务,也要满足这样的条件,这与之前介绍的输入噪声向量,输出生成图像有所不同,下面是整个框架示意图:

该框架输入图x,经过生成器G之后得到分割结果G(x),然后一边将G(x)和x一起作为判别器的输入,另一边将真实标注y和x一起作为判别器的输入,前者判别器输出为fake,后者为real。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

言有三

三人行必有AI

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值